90_f.

TECHNICAL NOTE

D-1778

ESTIMATES OF ATTENUATION AND REFLECTION OF
TELEMETERING SIGNALS BY IONIZED FLOW FIELDS SURROUNDING

By Anthony J. Russo, Jr.

TYPICAL REENTRY BODIES

Langley Research Center Langley Station, Hampton, Va.

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION
WASHINGTON
August 1963

COPY

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

TECHNICAL NOTE D-1778

ESTIMATES OF ATTENUATION AND REFLECTION OF

TELEMETERING SIGNALS BY IONIZED FLOW FIELDS SURROUNDING

TYPICAL REENTRY BODIES

By Anthony J. Russo, Jr.

SUMMARY

18770

Estimates of the degree of signal loss due to attenuation and reflection by the inviscid equilibrium plasma sheath were made for spherically blunted cones with half-angles of 30°, 9°, and 0° at Mach numbers as high as 25, 20, and 19.25, respectively. The computations were made for transmitting frequencies of 30 mc, 240 mc, and 10,000 mc and over the altitude range from 60,430 feet to 230,000 feet. Calculations, utilizing the simplest application of electromagnetic theory, were made by using normalized body shape parameters, and methods for applying the resulting tabulated data to specific vehicle reentry problems are discussed.

The possible significance of viscous interaction and nonequilibrium effects on the applicability of the results to a given problem is discussed briefly.

Charts of the electromagnetic properties of equilibrium air for temperatures from $3,000^{\circ}$ K to $7,000^{\circ}$ K are presented from which attenuation and reflection estimates can be made when the density and temperature distributions are known. Included also are charts which may serve as a guide in the selection of telemetering frequencies for particular environmental conditions.

INTRODUCTION

The plasma sheath surrounding a hypersonic reentry vehicle does much to impede the transmission of radio signals traveling to and from the vehicle (ref. 1). The physics of the interaction of the plasma and the electromagnetic wave in the region of the vehicle is generally understood. However, the ability to predict quantitatively these effects for an actual flight transmission problem is not yet demonstrated because of the lack of actual flight data of this nature and because of the great number of simplifying assumptions which must be made in order to readily obtain numerical answers. Such flight confirmation is, of course, very much desired. Experimental flight data of a passive nature exist, however, in that a significant number of reentering vehicles lose radio contact somewhere along their trajectories and these blackout points are quite often

known. Regretably, however, in these blackouts that part of the signal loss due to attenuation and reflection is not known since other factors, such as antenna breakdown, pattern shift, antenna impedance mismatch, or simply overheating of the transmitting equipment, also contribute to the total signal loss. It is very likely that attenuation and reflection are the primary reasons for the signal loss and at times may be solely responsible for the loss. These uncertainties point up the need for a controlled experiment in which the contribution to signal loss of each factor can be determined. An experiment in which attenuation and reflection could be measured independently of all other factors would be most valuable since it would provide a check on the reliability of the theoretical methods for estimating the signal loss.

In the present analysis only the action of the ionized flow field on the electromagnetic wave (that is, attenuation and reflection) is considered and the simplest theoretical approach is employed. The object of this analysis is to predict theoretically (within the limits imposed by the assumptions) the degree of signal loss for a number of environmental conditions which are similar to those commonly experienced by suborbital reentry vehicles. The calculations are of a general nature in that they may be applied to bodies of arbitrary size (accuracy increasing with size) and they cover a range of environmental conditions which allow interpolations to be made for a number of trajectories which fall within the bounds considered. Also, estimates may be made for bodies whose shapes are similar to the ones considered here by noting the change of signal loss with change in body shape, all other factors being equal.

Theoretical estimates have been made in the literature for isolated conditions and the general variations of the more important parameters discussed. However, calculations are not presently available to enable specific estimates to be made for entire trajectories.

In order to estimate the effect of the plasma sheath on the attenuation and reflection of signals, it is first necessary to have an accurate description of the flow conditions surrounding the vehicle. The solutions to the equations of the flow about blunt-nose bodies are quite difficult to obtain and this problem has for some time stimulated effort by theoretical aerodynamicists. Much progress has been made, however, in producing approximate descriptions of hypersonic real-gas inviscid-flow fields but additional effort should be directed toward obtaining flow solutions in the low Reynolds number regime where the inviscid approach loses its validity.

Inviscid equilibrium flow is used in the present analysis because these solutions were available and will make the results applicable to a general range of body sizes. Classically thin boundary-layer effects pertinent to a particular body might be included in such an analysis at the cost of additional complexity of the method but this was not done.

The simple plane-wave electromagnetic theory used in this analysis has been shown to be in fairly close agreement with experimental data obtained in tests with a chemically produced homogeneous plasma (ref. 1). These tests, however, were unlike an actual flight in that (1) the plasma stream contained no large temperature or density gradients, and (2) the plasma was of the high-density

(and, correspondingly, high electron collision frequency) variety; whereas, for a hypervelocity reentry vehicle (1) the flow field contains, for the most part, very high temperature and density gradients, and (2) the plasma is a low-density (low electron collision frequency) type. At the present time, the available low-density ground testing facilities cannot produce rarefied plasmas which fully simulate real conditions. Thus, the only means for obtaining such data for comparison with theory is a flight experiment.

SYMBOLS

c_p	pressure coefficient
с	speed of light in a vacuum, 3×10^{10} cm/sec
D	diameter, cm
đ	dissociation distance, cm
d _e	effective plane slab thickness, cm
$\mathtt{f}_\mathtt{p}$	plasma frequency, cps
f	signal frequency, cps
l	mean-free path, cm
m	mass of electron
М	Mach number
N_e	electron concentration, cm ⁻³
n_{i}	number density of ith species
p	pressure
$\mathtt{Q}_\mathtt{i}$	electron collision cross section of ith species
R	power reflection coefficient
R_{12}	power reflection coefficient for uniform semi-infinite plasma
r	radius, cm
S	entropy
(SL) _A	signal loss due to attenuation, db

```
(SL)<sub>R</sub>
            signal loss due to reflection, db
(SL)T
            total signal loss
            temperature, <sup>O</sup>K
\mathbf{T}
            time, sec
t
            flight velocity, ft/sec
u_1
            axial distance from body nose, cm
\mathbf{x}
            distance from body surface along normal
У
            attenuation coefficient (homogeneous media), nepers/cm
α
            phase constant (homogeneous media), cm<sup>-1</sup>
β
            dielectric constant
\epsilon
k
            Boltzmann constant
            cone half-angle, deg
\delta_{\mathrm{BL}}
            boundary-layer thickness
\delta_{12}
            relative phase difference
γ
            propagation factor
            shock detachment distance, cm
Δ
            electron collision frequency, sec-1
            stream function
            electrical conductivity
σ
           permeability
μ
            radial signal frequency, radians/sec
w
            radial plasma frequency, radians/sec
\omega_{\mathbf{p}}
           density
ρ
λ
           wavelength, cm
```

Subscripts:

B plasma	conditions	at	body	surface	for	inviscid	flow
----------	------------	----	------	---------	-----	----------	------

max maximum

NS normal shock

n nose

S behind shock

1 ambient

O free space or standard conditions

Primed symbols indicate reference values as taken from flow-field solutions.

FLOW FIELDS

Both attenuation and reflection losses are functions of the temperature and density of the surrounding ionized gas and thus an accurate prediction of these flow-field properties is necessary.

One major difficulty in obtaining flow-field solutions has been the inability to readily obtain accurate descriptions of the subsonic flow in the forward stagnation region. This region is important because the part of the flow field in the aft regions of a blunt body which influences signal loss is made up of particles of air which have been processed through the near-normal portion of the bow shock (fig. 1). The path traversed by one such particle of air is illustrated in the figure by the streamline ψ .

The equations of motion for the flow in the stagnation region are of the elliptic type. Conventional numerical methods for the solution of elliptic equations are unstable and often give erroneous results. Gravalos (ref. 2) has developed an iterative scheme which seems to provide satisfactory results for the subsonic and transonic regions. The equations for the supersonic flow on the afterbody are of the hyperbolic type and are easily solved by the real-gas characteristics method. The subsonic and transonic results are used as input data for the method of characteristics which gives solutions for the afterbody region. Thus, the properties at any point in the aft flow field are only as good as the solutions to the flow equations in the stagnation region. The solutions of Gravalos for conditions listed in figure 2 were used in this analysis and were made available to the NASA by the Missile and Space Vehicle Department of the General Electric Company from computations of H. W. Ridyard and S. FitzGibbon. Flow-field solutions based on the Gravalos method are also found in references 3 and 4. Figure 2 indicates the various body configurations and flight conditions which were included in the analysis.

The flow-field solutions were calculated by using the assumptions of inviscid flow and thermochemical equilibrium at every point in the flow field.

In order to make predictions of signal loss for a specific body shape which can be generally applied to any trajectory falling within the reentry corridor, it is necessary to carry out flow-field calculations for many combinations of velocity and altitude. Since the calculation of flow fields is a time-consuming and expensive procedure, the present analysis is made by taking solutions for a range of Mach numbers, but limited number of altitudes, and adjusting the solutions to a range of altitudes by the method of appendix A. Although such a method is not completely rigorous, the range of applicability is greatly broadened and it is believed that the results are only slightly compromised.

Attenuation

When an electromagnetic wave is imposed upon a medium containing free electrons, each electron may be considered to act as a miniature antenna and to absorb energy from the wave. Since the electron is accelerated by the electric field, the energy of the wave may be thought of as being converted into energy of the electrons. This conversion of energy results in a decrease of signal strength and may cause reflective and refractive effects. See reference 5 for a general discussion of absorption mechanisms.

A tractable expression for the attenuation coefficient can be obtained from Maxwell's equations and the equation of motion for an electron. Plane-wave solutions to Maxwell's equations, for homogeneous media, in their simplest form were employed in obtaining an expression for the attenuation coefficient. The simplest theory was used since analyses involving more mathematical rigor are extremely laborious and many times present insolvable expressions, and in view of other related uncertainties (nonequilibrium effects, viscous interactions, and electron-heavy particle collision cross sections, for example) such rigor is not clearly warranted.

The development of the plane-wave expression for the attenuation coefficient is shown in appendix B. The attenuation coefficient is

$$\alpha = \omega \left[\frac{\epsilon \mu}{2} \left(\sqrt{1 + \frac{\sigma^2}{\epsilon^2 \omega^2}} - 1 \right) \right]^{1/2}$$
 (1)

For a slightly ionized homogeneous gas, the dielectric constant ϵ and the conductivity σ may be written as follows (ref. 6):

$$\epsilon = \epsilon_0 \left(1 - \frac{\omega_p^2}{v^2 + \omega^2} \right) \tag{2}$$

$$\sigma = \epsilon_0 \nu \left(\frac{\omega_p^2}{\nu^2 + \omega^2} \right) \tag{3}$$

Substitution of equations (2) and (3) into equation (1) results in

$$\alpha = \frac{\omega}{c_0} \frac{1}{\sqrt{2}} \left[\left(\frac{\omega_p^2}{v^2 + \omega^2} - 1 \right) + \sqrt{1 - \frac{\omega_p^2}{v^2 + \omega^2}} \right)^2 + \left(\frac{\omega_p^2 v}{\omega (v^2 + \omega^2)} \right)^2 \right]^{1/2}$$
 (4)

where α is in nepers per centimeter and where ω_p and ν are defined by equations (14) and (15), respectively. A great deal of insight may be gained by studying graphical representations of equation (4). (See, for example, figs. 3 and 4.) In figure 3 is shown the effect of changing the signal frequency ω for a constant plasma frequency ω_p and in figure 4 is illustrated the effect of a varying plasma frequency for a given signal frequency. It is readily seen from figure 3 that for very high frequencies and for very low frequencies the attenuation will drop off markedly. It is not feasible to take full advantage of these indications, however, since, in order to obtain low attenuation during severe reentry conditions, the signal frequency used quite often would have to be higher than is practical at present or so low that antenna size and atmospheric noise become problems.

Reflection

When electromagnetic waves are incident upon a boundary between media in which the phase velocity is appreciably different, such as the discontinuity in going from the antenna surface out into the ionized flow field, the incident wave is divided into reflected and transmitted trains. The larger the change in phase velocity across the boundary of the two media, the larger will be the fraction of incident energy R returned in the reflected wave train.

A reflection study may be greatly simplified by considering only normally incident waves. An analysis of this type is employed here and should suffice for obtaining first-order estimates of the reflected energy.

In studying the reflection of electromagnetic waves it is again necessary to prescribe the properties of the medium (flow field in the immediate vicinity of the antenna). Reflection calculations for any general property variation may not be carried out conveniently (refs. 7, 8, and 9) due to the great complexity of the problem. An approximate method is presented herein whereby an effective medium based on the known property variations may be set up which lends itself to a simplified analysis that can be rapidly performed.

Let us consider the plane sheet model (fig. 5) which is treated in reference 10. Let medium 1 be free space on both sides of medium 2 which is the effective homogeneous plasma slab. Figure 6 illustrates the model by which an effective homogeneous plasma slab is substituted in the present method for the actual problem of varying plasma properties. The development of the reflection

coefficient for a homogeneous slab of finite thickness is given in reference 10 and is

$$R = \frac{R_{12} \left[\left(1 - e^{-2\alpha d_e} \right)^2 + 4e^{-2\alpha d_e} \sin^2 \beta d_e \right]}{\left(1 - R_{12} e^{-2\alpha d_e} \right)^2 + 4R_{12} e^{-2\alpha d_e} \sin^2 \left(\delta_{12} + \beta d_e \right)}$$
(5)

where R_{12} is the power reflection coefficient (ratio of reflected to incident power) at normal incidence for the plane interface dividing two semi-infinite media or, simply, the value of R for d_e approaching infinity. The reflection coefficient R_{12} at an interface is zero when the intrinsic impedances of the adjoining media are equal. In general, for the present purposes, an ionized gas having a temperature of approximately 3,000° K or lower may be considered to have electromagnetic properties which are essentially those of free space. The reflection coefficient R_{12} is a simple function of the attenuation coefficient and the phase constants (of free space and the conducting medium) as given in reference 10 and may be written as

$$R_{12} = \frac{(\beta_0 - \beta)^2 + \alpha^2}{(\beta_0 + \beta)^2 + \alpha^2}$$
 (6)

The relative phase difference δ_{12} is obtained from the following relation (ref. 10):

$$\delta_{12} = \tan^{-1} \left(\frac{-2\beta_0 \alpha}{\beta_0^2 - \beta^2 - \alpha^2} \right) \tag{7}$$

The phase constant is derived simultaneously with the attenuation coefficient (appendix B) and is given by the relation

$$\beta = \omega \left[\frac{\omega \epsilon}{2} \left(\sqrt{1 + \frac{\sigma^2}{\epsilon^2 \omega^2}} + 1 \right) \right]^{1/2}$$
 (8)

Then substituting equations (2) and (3) into equation (8) gives

$$\beta = \frac{\omega}{c_0 \sqrt{2}} \left\{ \left(1 - \frac{\omega_p^2}{v^2 + \omega^2} \right) + \sqrt{1 - \frac{\omega_p^2}{v^2 + \omega^2}} \right)^2 + \left[\frac{\omega_p^2 v}{\omega (v^2 + \omega^2)} \right]^2 \right\}^{1/2}$$
 (9)

Graphical illustrations of equation (9) are presented in figures 7 and 8. The phase constant may be expressed, also, in terms of the attenuation coefficient as

$$\beta = \frac{\mu_0 \sigma \omega}{2\alpha} \tag{10}$$

or

$$\beta = \frac{\omega}{2\alpha c_0^2} \left(\frac{v \omega p^2}{v^2 + \omega^2} \right) \tag{11}$$

The effect on $\,R\,$ of increasing the slab thickness $\,d_e\,$ is shown in figure 9 where the reflection coefficient of water is seen to vary quite markedly with thickness, reaching maximums at approximately

$$d_e = \frac{\lambda}{\mu}, 3\frac{\lambda}{\mu}, 5\frac{\lambda}{\mu} \dots (2n - 1)\frac{\lambda}{\mu}$$

and oscillating about $R_{12}.$ Of course, the reflection-coefficient variation for a high-entropy plasma sheath is somewhat different from that of water. However, it is interesting to compare the two for an illustration of the effect of increased conductivity. Therefore, the reflection-coefficient variation for a typical high-entropy plasma sheath is also shown in figure 9, where it can be seen that R closely approaches unity at the first maximum and for this reason the value of R shows little oscillation. Thus, for $d_e > \lambda/\mu$, generally $R \approx R_{12}$ for high entropy plasmas. Hence, use of semi-infinite reflection theory should suffice for a plasma sheath whose effective thickness is greater than λ/μ and whose properties (α,β) are sufficiently severe (dissipative) to make the oscillation of R with d_e virtually negligible.

Note that the wavelength λ referred to here is the wavelength within the effective medium itself and may differ by several times the value of the free-space wavelength λ_0 . The magnitude of the wavelength in a homogeneous isotropic medium is given by

$$\lambda = \frac{2\pi}{\beta} = \frac{2\pi c}{\omega} \tag{12}$$

and that of the wavelength in free space by

$$\lambda_{\rm O} = \frac{2\pi}{\beta_{\rm O}} = \frac{2\pi c_{\rm O}}{\omega} \tag{13}$$

Since the wavelength is inversely proportional to the phase constant (eq. (12)), an idea of the wavelength variations with temperature and density may be gained from figures 10, 11, and 12.

The foregoing equations are applicable until the radius of curvature of the body surface is small with respect to the incident wavelength. When this condition occurs, the reflectivity will, in general, be reduced from that given by these equations (ref. 10).

ELECTROMAGNETIC WAVE PROPAGATION PROPERTIES OF AIR

In a gas at chemical equilibrium, which is assumed throughout this paper, the temperature and constituents within the plasma are constant with time and the mole fraction of these constituents can be found by the methods of quantum statistical thermodynamics (ref. 11), which determine the partition of the energy states of a particle species into rotational, vibrational, translational, dissociation, and ionization energies. Results of calculations of this type are recorded in table form in reference 12.

The electron collision frequency ν and the plasma frequency ω_p must be known in order to calculate attenuation and reflection (eqs. (4) and (9)) and are both functions of temperature and density for equilibrium air. The plasma frequency is a simple function of the electron concentration - that is,

$$\omega_{\rm p} = 2\pi f_{\rm p} = 2\pi (8970) \sqrt{N_{\rm e}}$$
 (14)

Some good discussions, along with some guides to the literature, on plasma oscillations are given in references 13, 14, and 15.

The numerical values of $N_{\rm e}$ used in this analysis were taken from charts provided in reference 16 where $N_{\rm e}$ is shown as a function of temperature and density for equilibrium air. These charts, along with charts provided in reference 17, illustrate the rapid increase in ionization at temperatures in the neighborhood of 3,000° K. Also, from these charts, it can be seen that the rate of increase of $N_{\rm e}$ with respect to temperature begins to decrease at the higher temperatures where the constituents are becoming singly ionized.

From the kinetic theory of gases the electron collision frequency is expressed as

$$v = \frac{4}{3} \sqrt{\frac{8kT}{\pi m}} \sum_{i} n_i Q_i$$
 (15)

The values of collision cross section Q_i available at the present time are in some disagreement and, therefore, any collision frequency calculations are only order-of-magnitude estimates. Collision frequency data used in this analysis are from reference 6. These data were selected because, for the most part, they result in conservative (in that they are higher) attenuation calculations. More precise collision frequency calculations must await the refinement of experimental determination of the collision cross sections.

By using the aforementioned data along with equations (9), (4), and (6), the more pertinent electromagnetic parameters β , α , and R_{12} were calculated and are presented in figures 10 to 33.

Figures 13, 14, and 15 show the variation of the attenuation coefficient with temperature. The best overall picture of the behavior of α is illustrated by figure 15 where the effect of plasma resonance $(\omega/\omega_p=1)$ is seen to result in a very sharply increasing attenuation coefficient for the lower densities $(\rho/\rho_0=10^{-3},\ 10^{-4},\ \text{and}\ 10^{-5})$. When plasma resonance is brought about at lower signal frequencies, the increases begin at proportionally lower temperatures. The fact that sharp increases in attenuation coefficient take place at low densities may be explained by first inspecting figure 34 and noting that very low values of ν/ω_p correspond to the lower densities (higher altitudes). Now, in figure 4 in the direction of increasing temperature (decreasing ω/ω_p), for very small values of ν/ω_p , it is seen that a very sharp increase in attenuation is encountered at the plasma resonance condition $(\omega/\omega_p=1)$. Consequently, the abrupt increase in α evidenced in figure 15 is to be expected.

Figures 10, 11, and 12 illustrate the variations of the phase constant β with temperature. The phase constant decreases very sharply at plasma resonance, corresponding to the sharp increase in attenuation coefficient, and again this sharp change occurs at the lower densities. This abrupt behavior of the phase constant may be explained in a manner similar to the foregoing explanation of the abrupt increase in attenuation coefficient. Examination of figure 8 shows that for low values of ν/ω_p , which correspond to low densities, abrupt decreases in phase constant occur as the temperature is increased (ω/ω_p is decreased) through the region of plasma resonance.

Referring again to equation (12) it is seen that the sudden decrease in phase constant will sharply increase the wavelength of the electromagnetic wave within the plasma. The low densities corresponding to the abruptly changing values of α and β occur at the altitudes of most interest for reentry vehicles. From figures 13, 14, and 15 it can be further seen that the attenuation coefficient begins to level off at the much higher temperatures, which indicates that the gas is beginning to approach a state in which all the constituents are becoming singly ionized.

Figures 16, 17, and 18 picture the dependence of the attenuation coefficient on density. It is seen that, for a constant temperature and signal frequency, α will reach a maximum at some particular density value. Since density decreases exponentially with increasing altitude, the density scale may be thought of as a linear altitude scale. These figures help to illustrate why the signal-loss profile plotted as a function of altitude for a reentry vehicle is quite often very sharp. If the temperature history of a point on the vehicle should be such that it peaks at an altitude corresponding to the density where α is a maximum at a given temperature, then the attenuation profile will be doubly sharpened. Figure 35 shows the normal-shock (approximately stagnation) temperature for constant velocities over the altitude range.

It is seen from figures 16, 17, and 18 that the effect of increasing the signal frequency for a given temperature is to move the point of maximum α in the direction of higher density or lower altitude.

Figures 19 to 2^4 illustrate, a little more vividly, the fact brought out by figure 3 - that is, lower attenuation for high and low frequencies than for the intermediate frequencies.

Variations of the semi-infinite reflection coefficient for ionized equilibrium air R_{12} may be studied in figures 25 to 33. The coefficient R_{12} is seen to be affected pronouncedly by the density as shown in figures 25, 26, and 27. As was true for the attenuation coefficient, the effect of increasing signal frequency is to shift the maximum value of R_{12} for a given temperature in the direction of higher density. The value of R_{12} generally decreases with an increase in frequency for the temperature range considered. For the lower densities, however, the decrease of R_{12} becomes much more pronounced when the frequencies are increased above a certain point.

VISCOUS FLOW EFFECTS

In order to completely describe a flow field, it is necessary to consider the viscous effects near the body surface. For this purpose the Navier-Stokes momentum equations are usually written in approximate form and solved. For example, when the ratio of inertia forces to viscous forces (Reynolds number) is very high, the Navier-Stokes equations are greatly simplified since almost all of the viscous terms can be deleted. The equations are thus amenable to analysis.

For a hypervelocity, high Reynolds number flow about a body, the entire flow field may be assumed to be inviscid with the exception of a very thin layer of viscous flow at the wall. Then, these two regions of flow may be computed separately since the influence of one region on the other is relatively small (classical boundary-layer approach).

For a low Reynolds number flow, however, the viscous terms and the inertia terms in the Navier-Stokes equations are of nearly equal magnitude. Thus, neither of the terms can be deleted and the equations are rendered insolvable.

Adams and Probstein (ref. 18) have formulated an expression which gives, to a first approximation, the ratio of the boundary-layer thickness to the shock detachment distance at the stagnation point:

$$\frac{\delta_{\rm BL}}{\Delta} \approx \left(\frac{l_1}{r_{\rm n}}\right)^{1/2} M_{\rm l}^{1/2} \left(\rho_{\rm NS}/\rho_{\rm l}\right) \tag{16}$$

Equation (16) is illustrated in figure 36. When δ_{BL}/Δ becomes appreciable (for example, $\delta_{BL}/\Delta \ge 0.1$), the error involved in calculating the flow field under the inviscid assumption begins to become significant so that in order to have a

high degree of confidence in an inviscid flow-field calculation δ_{BL}/Δ should be much less than unity. Figure 36 may be used to estimate the degree of confidence with which the usual assumptions can be applied in calculating the flow field. At present, the usual practice in approximating low Reynolds number flow fields is to make calculations by using classical methods and then to apply first-order corrections for the low-density viscous effects based on arbitrary considerations.

NONEQUILIBRIUM FLOW

For many flight conditions, in particular those at high altitudes, the flow about a hypervelocity vehicle may be considerably removed from the chemical and thermodynamic equilibrium state.

In air plasma, which contains monatomic and diatomic species, neutral and charged, several processes can cause departure from equilibrium: vibrational energy lag, dissociation lag, ionization lag, and recombination lag. These processes must be treated separately and for each constituent of the plasma; thus, the problem becomes one of great complexity because of the large number of reaction times to be considered. The resulting thermal effects, in general, are proportional to the ratio of reaction time to flow time and to the energy involved in the reaction. Vibrational effects, in some instances, can be neglected since their contribution toward removal of the gas from equilibrium is quite often negligibly small. In general, it may be said that the major result of nonequilibrium process on the shock-layer flow is one of change of the thermodynamic properties of the gas, and only in certain instances will the dynamical behavior depart significantly from that of an equilibrium flow.

All data presented in this analysis pertain to air in chemical equilibrium. This assumption is thought to be quite valid for a substantial range of conditions. A number of exceptions, however, may occur such as the one related in reference 19 where Bortner has shown the effect of the rate constants on the electron concentration to be very pronounced (that is, an order of magnitude change in the oxygen dissociation rate constant can cause increases in the electron concentration of over 10²). Nonequilibrium effects should be more pronounced at the higher altitudes since two-body reaction rates are proportional to the square of the density. In reference 16 some effects of nonequilibrium flow on the trail properties are discussed and in reference 20 such effects are computed for both shock-wave compressions and flow expansions.

Quite generally, it is believed that the first effects of nonequilibrium flow (that is, as altitude is increased) are those resulting from a recombination lag (frozen flow) beginning in the wake of a vehicle. As the altitude is increased, for a constant velocity, the region of recombination lag will move upstream. For even higher altitudes, the region of frozen flow may engulf the entire vehicle (ref. 20), that is, flow becomes frozen in the region of the stagnation point. This effect may be of major importance to the ionization properties in the shock layer. As the altitude is increased further (beyond the point where frozen-flow effects have become large), the effect of dissociation lag

begins to become large. The distance required for the dissociation to approach equilibrium will increase with increasing altitude.

As an example of one phase of nonequilibrium flow, some dissociation-lag data are presented and briefly discussed. It is not to be inferred that dissociation lag is more important than the consideration of ionization lag and recombination lag, but this effect is selected as an example for discussion purposes only since an investigation of all phases of nonequilibrium flow in its fullest extent is not the purpose of this report. These data, calculated by Teare (shown in ref. 16), aid in determining the flight conditions at which dissociation lag, characteristic of compression flow, begins to show prominence. Teare has calculated the distance d behind a normal shock at which the gas temperature has relaxed down to a value 35 percent above that predicted by equilibrium considerations. It was further concluded that a distance of the order of 10d is required for the temperature to drop to within 10 percent of equilibrium temperature. Figure 37 taken from reference 16 illustrates the nomenclature used in making these estimates.

The dissociation distance d becomes larger with increasing altitude while the shock detachment distance Δ at the stagnation point becomes smaller as based on the following approximate relation:

$$\frac{\Delta}{r_n} \approx \frac{1}{\rho_{\rm NS}/\rho_1}$$
 (17)

An interesting parameter by which to judge the degree of nonequilibrium effect due to dissociation lag is the ratio of the dissociation distance to the shock detachment distance d/Δ which may be written as

$$\frac{d}{\Delta} \approx \frac{d}{r_n} \frac{\rho_{NS}}{\rho_1} \tag{18}$$

When $d/\Delta \ge 1$, the flow over the nose is of a nonequilibrium nature. A quasiequilibrium state may be defined by $0 < d/\Delta < 1$ and the equilibrium state might be assumed for $d/\Delta \approx 0$. Figure 38 illustrates the variation of the parameter $r_n \frac{d}{\Delta}$ with altitude. Once the flow attains velocities typical of the hypersonic regime little effect is seen due to increasing velocity, the major factor influencing the onset of dissociation lag being the altitude for a given r_n . The literature on nonequilibrium flow is extensive (refs. 16 and 19 to 24) with more knowledge being gained as time passes. The present discussion is merely a cursory one for the purpose of calling attention to the problem.

METHOD OF ANALYSIS

Having discussed briefly some of the problems involved in estimating the nature of a hypersonic flow field and its effect on electromagnetic wave

propagation, the steps to be taken in obtaining a quantitative estimate of signal loss are next outlined.

Figure 39 illustrates, qualitatively, the property distributions along a line normal to the vehicle wall and extending from the wall to the shock. If these property distributions are known, the α distribution can be obtained by using equation (4) or the values can be taken directly from figures 13, 14, and 15 for those particular signal frequencies. Graphical integration of the distribution of α along a normal provides the total attenuation loss

$$\frac{(SL)_{A}}{D_{n}} = 8.686 \int_{Body}^{Shock} \alpha d\left(\frac{y}{D_{n}}\right)$$
 (19)

in db/cm since all spatial coordinates in the available inviscid flow-field solutions have been nondimensionalized with respect to the nose diameter. To obtain the absolute attenuation in decibels simply insert the desired nose radius into the identity

$$(SL)_A \equiv \left[\frac{(SL)_A}{D_n}\right] D_n$$
 (20)

The applicability of the equation to attenuation estimates becomes more valid with increased nose diameter since for small diameters the wavelengths may be very large with respect to the spatial variation of conductivity (refs. 7, 8, 10, and 25). A criterion for the applicability of these results as a function of the effective depth of the plasma sheath is presented and discussed in the section entitled "Results" and in appendix B.

The loss in decibels due to reflection $(SL)_R$ may be approximated by equation (5) along with the following relation:

$$(SL)_R = 10 \log \frac{1}{1 - R}$$
 (21)

The total signal loss is the sum of the attenuation and reflection losses - that is,

$$(SL)_{T} = (SL)_{A} + (SL)_{R}$$
 (22)

As mentioned previously, for generality and simplicity the effect of the boundary layer is not considered herein. The inviscid portion of the shock layer has thus been accounted for in such a manner as to make the results applicable to a particular shape regardless of its size, although with the least accuracy for the smaller bodies (smaller Reynolds number).

The dashed lines in figure 39 indicate some qualitative modifications to the inviscid distribution due to the viscous boundary layer. For the blunt-body

cases considered herein, a laminar boundary layer either decreases or has no effect on the attenuation and reflection. The effect of very thin laminar boundary layers can be entirely neglected, generally. A laminar boundary layer of significant thickness may alleviate the signal-loss problem somewhat. This alleviation is due to an increased fraction of the energy in the shock layer being transferred to the body with a consequent lowering of the high temperature in the high entropy layer adjacent to the body. Such an increase in the ratio of boundary-layer thickness to shock-layer thickness occurs as altitude is increased. A highly dissipative boundary layer on the other hand (higher Mach number flow) may increase attenuation and reflection somewhat, although this point is not clearly resolved. The term "highly dissipative boundary layer" refers herein to a boundary layer in which the static enthalpy increases above the maximum static enthalpy in the inviscid flow field. This condition is usually associated with sharp-nose vehicles and probably will not be encountered with blunt-nose vehicles, except for aft positions on the body.

In any event, if the boundary layer is classically thin, its attenuation effect can be calculated independently and can simply be added to the attenuation caused by the inviscid portion of the flow field. The reflection effects can be calculated anew to include the boundary-layer results.

RESULTS

Attenuation and reflection computations have been made for all the flow-field solutions at conditions listed in figure 2, but with the altitude range expanded. Only the inviscid portion of the flow field was considered and the resulting data are presented in table I.

The parametric results are only discussed in general here since the number of the computations is so large that discussion of each is deemed impractical. The parameters to be discussed are: the total attenuation normalized to nose diameter (SL)_A/D_n, the nondimensional effective plasma-sheath thickness d_e/D_n , the signal loss due to reflection (SL)_R, the wavelength within the plasma at the inviscid body wall and/or at the edge of a classically thin boundary layer λ_B , and the ratio of wavelength to nondimensional plasma-sheath thickness $\frac{\lambda_B D_n}{d_e}$.

Figures 40, 41, and 42 show, respectively, a variation of attenuation, effective plasma thickness, and reflection loss with axial distance along the body center line. It is seen that the lowest signal losses occur at the rear. It is interesting to note that the attenuation loss (fig. 40) appears to peak in the vicinity of the shoulder (that is, tangency of hemisphere to cone) although it might be expected to be a maximum farther toward the stagnation region. This result may be understood more clearly by writing the simple expression for the attenuation loss

$$(SL)_{\Lambda} = 8.686\alpha_{B}d_{e} \tag{23}$$

and differentiating with respect to axial distance x to give

$$\frac{d(SL)_{A}}{dx} = 8.686 \left[\alpha_{B} \frac{d(d_{e})}{dx} + d_{e} \frac{d(\alpha_{B})}{dx} \right]$$
 (24)

Because the flow is expanding and cooling,

$$\frac{\mathrm{d}(\alpha_{\mathrm{B}})}{\mathrm{d}x} \lesssim 0$$

Thus, the significant part of equation (24) for the present argument is the variation of d(de)/dx, and as long as

$$0 < \alpha_{\rm B} \frac{d(d_{\rm e})}{dx} > \left| d_{\rm e} \frac{d(\alpha_{\rm B})}{dx} \right|$$

the attenuation will keep increasing with x. As soon as

$$\alpha_{\rm B} \frac{\mathrm{d}(\mathrm{d}_{\rm e})}{\mathrm{d}x} \lesssim \left| \mathrm{d}_{\rm e} \frac{\mathrm{d}(\alpha_{\rm B})}{\mathrm{d}x} \right|$$

the attenuation will peak and begin to decrease with $\,x$. A typical variation of $\,d_{\rm e}\,$ with $\,x\,$ is shown in figure 41.

Figures 43 and 44 show, respectively, the variation of the attenuation and reflection losses with altitude for a constant Mach number for signal frequencies of 30, 240, and 10,000 mc. It should be remembered that these are only examples of the variation, not necessarily typical variations. See table I for particular conditions of interest.

Values of $(SL)_A/D_n$ are presented in table I. It must be remembered that the value of the nose diameter being considered has to be multiplied by the tabulated value, as shown in equation (20), in order to obtain attenuation. An approximate attenuation history may then be constructed for any of the configurations given for any subcircular trajectory by interpolating directly between the Mach numbers presented. Application of such results is, of course, only valid in the range of altitudes and velocities where viscous and nonequilibrium effects are small, as discussed previously.

The tabulated values of $(SL)_R$ illustrate the signal loss due to reflection for all the bodies and flight conditions considered. These calculations were based on equation (5) with (d_e/D_n) , evaluated for four numerical values of D_n , as the slab thickness. These four nose diameters were chosen to encompass a range including: (1) a sheath thickness always less than one-quarter wavelength and (2) three sheath thicknesses which are, for a number of frequency and body-shape combinations, in the neighborhood of, or slightly greater than, one-quarter

wavelength. It is seen that, for the smaller sheath thickness (for $D_n=5.08\ cm$), the estimated reflection loss is always less than that associated with the larger sheath thicknesses ($D_n=30.48$, 25.40, and 20.32 cm), as can be explained by examination of figure 9. At the point where the data for the larger diameters coincide, the plasma sheath is approximately equal to or larger than one-quarter wavelength and acts in a manner similar to one of infinite thickness. As for attenuation, a rough history of the reflection loss for a particular trajectory may be obtained by interpolating directly between the Mach numbers given. The history of the total signal loss over the trajectory may then be obtained by summing the attenuation and reflection losses.

The nondimensional effective plasma-sheath thickness d_e/D_n is given along with the attenuation in table I. These data may be useful in making reflection calculations other than those considered herein. Because of the large variety of configurations presented here, the data may serve as a guide (by careful interpolation and extrapolation) to the selection of effective thicknesses for blunted configurations for which flow-field solutions are not available. Furthermore, since the thermodynamic properties at the body are often estimable without complete flow-field solutions (that is, from pressure coefficient and normal-shock entropy), an attenuation coefficient may be estimated based on the body properties and effective slab thickness, and may suffice for the calculation of attenuation (eq. (23)) and reflection.

The wavelength λ within the plasma is frequently seen to be a minimum at an intermediate altitude, depending upon frequency, and will approach its free-space value λ_0 as the density becomes very small, as at increasing altitude. These data may prove useful in the selection of antenna characteristics.

The ratio of wavelength to nondimensional sheath thickness $\lambda D_n/d_e$ should give some insight as to possible limits of applicability of such solutions, which assume homogeneity of plasma, to a flow field which is highly nonhomogeneous. (See appendix B.) If conditions are such that $\lambda/d_e \leq 1$, then the homogeneous solution approach should be very accurate. This condition may not be achieved in many practical problems even for large bodies (large D_n) except when higher than standard telemetry frequencies are used. It is believed that the accuracy diminishes proportionally as λ/d_e increases greatly beyond unity $(\lambda/d_e \gg 1)$, but it is difficult to say at this time just how inaccurate planewave, homogeneous solutions are when λ/d_e becomes very large.

CONCLUDING REMARKS

Estimates of signal loss in transmitting through the plasma sheath for a variety of hypersonic reentry situations have been made and presented in tabular form. It is seen from inspection of the data that very high signal loss is to be expected in many reentry situations. It is also seen, however, that the loss may be minimized by proper selection of frequency and location of the antenna at a rearward point on the body. Use of small bodies is also indicated on the basis of the equilibrium-flow considerations used in the analysis.

These data should be applied to specific problems with reservations in view of the assumptions which were used in making the calculations. Even though many qualifications apply to the results, it is believed that these results should be useful in estimating the qualitative variations of signal loss with respect to parameters such as Mach number, altitude, cone half-angle, and signal frequency.

Langley Research Center,
National Aeronautics and Space Administration,
Langley Station, Hampton, Va., March 7, 1963.

APPENDIX A

EXTRAPOLATION OF A GIVEN FLOW-FIELD SOLUTION TO DIFFERENT ALTITUDES

Consider the flow properties along a line normal to the afterbody (assumed direction of electromagnetic wave propagation). For a constant free-stream Mach number the inviscid, equilibrium properties along this normal are estimated for new ambient conditions (that is, range of altitudes) from the known property distribution along this normal at a particular ambient condition and by imposing the following conditions:

- (1) Shock shape and shock-layer thickness do not change with variation in altitude.
- (2) The normalized pressure coefficient at the body surface does not change with altitude.
- (3) Variation of properties across the shock layer remains similar with changing altitude.

The flow can then be approximated by calculating the properties behind the shock (using condition (1)) and the properties at the body surface (using condition (2)), and by applying the similarity assumption (using condition (3)) between these two points.

The properties immediately behind the shock may be calculated by the usual Rankine-Hugoniot relations for the given shock angle and ambient flow conditions, including the real-gas effects when the shock is strong (ref. 26). The properties at the body (or immediately outside a thin boundary layer) may be found by employing the Mollier chart for equilibrium air (ref. 27) with the surface pressure and entropy. The pressure coefficient expressed in the normalized form is

$$\frac{C_{p}}{C_{p,\text{max}}} = \frac{p - p_{l}}{p_{NS} - p_{l}} \tag{A1}$$

and is considered constant at a particular body point for M = Constant and varying altitude (condition (2)). The normal-shock pressure p_{NS} may be calculated or is readily available in chart form (ref. 26) and the ambient pressure p_1 is taken from the ARDC model atmosphere (ref. 28). Thus, the local pressure p_1 is easily calculated from equation (A1). The entropy at the body is simply the normal-shock entropy since the body streamline passes through the normal shock and the flow thereafter is isentropic. Inasmuch as two state properties (p, S_{NS}) at the body have been calculated, any other state properties, such as temperature and density, may be determined from the Mollier chart. By denoting the properties given by the flow-field solution as "base" properties and indicating them with primes, it is now possible to write expressions for the properties at the new altitude as functions of the "base" properties and the newly calculated body and shock properties.

First consider the temperature variation of the "base" solution (fig. 45)

$$T' = T'(y/d_e)$$
 (A2)

In close proximity to the body it is reasonable that

$$\frac{T}{T'} \approx \frac{T_B}{T_B'} \tag{A3}$$

where the subscript B denotes conditions at the body (or edge of a classically thin boundary layer). By similar reasoning, at points close to the shock

$$\frac{T}{T'} \approx \frac{T_S}{T_{S'}}$$
 (A4)

where the subscript S indicates properties immediately behind the shock. By use of assumption (3) T and T' can be related at points within the shock layer. If the origin $y/\Delta=0$ is taken at the wall, it can be assumed that the effect of T_B/T_B ' on T/T' is a linear one and decreases with increasing y/Δ as T_B/T_B '(1 - y/Δ). Likewise, in progressing toward the shock, it can be assumed that the effect of T_S/T_S ' is a linear one also and increases with increasing y/Δ as $(y/\Delta)T_S/T_S$ '. Now sum these two effects algebraically to obtain the expression

$$\frac{\mathbf{T}}{\mathbf{T'}} = \left(1 - \frac{\mathbf{y}}{\Delta}\right) \frac{\mathbf{T}_{\mathrm{B}}}{\mathbf{T}_{\mathrm{B}'}} + \frac{\mathbf{y}}{\Delta} \left(\frac{\mathbf{T}_{\mathrm{S}}}{\mathbf{T}_{\mathrm{S}'}}\right) \tag{A5}$$

Equation (A5) may be rearranged and written as

$$T = T' \left[\frac{T_B}{T_{B'}} + \frac{y}{\Delta} \left(\frac{T_S}{T_{S'}} - \frac{T_B}{T_{B'}} \right) \right]$$
 (A6)

In the same manner as that used to obtain equation (A6), the following expression may be determined for the density:

$$\rho = \rho' \left[\frac{\rho_{B}}{\rho_{B'}} + \frac{y}{\Delta} \left(\frac{\rho_{S}}{\rho_{S'}} - \frac{\rho_{B}}{\rho_{B'}} \right) \right]$$
 (A7)

Examples of the use of equations (A6) and (A7) are shown in figures 46 and 47, respectively.

Although this method is admittedly crude, it is an expedient means by which to extend a given flow-field solution over an altitude range and should result in

fairly close engineering estimates. Accuracy will depend upon the degree of applicability of the assumptions.

APPENDIX B

ATTENUATION AND PHASE-SHIFT COEFFICIENTS IN ONE-DIMENSIONAL

NONHOMOGENEOUS CONDUCTING MEDIA

A suitable form of the wave equation is obtained by consideration of the Maxwell equations:

$$\nabla \times \overline{E} = -\frac{\partial \overline{B}}{\partial t}$$
 (B1)

$$\nabla \times \overline{H} = \overline{J} + \frac{\partial \overline{D}}{\partial t}$$
 (B2)

where \overline{E} and \overline{H} are electric and magnetic vectors, respectively. If the curl of equation (B1) is taken, equation (B2) is differentiated with respect to time, and use is made of the constitutive relation

$$\overline{J} = \sigma \overline{E}$$

$$\overline{D} = \varepsilon \overline{E}$$

$$\overline{B} = \mu \overline{H}$$
(B3)

then a general form of the wave equation is seen to be

$$\nabla \times \nabla \times \overline{E} = -\mu \sigma \frac{\partial \overline{E}}{\partial t} - \mu \epsilon \frac{\partial^2 \overline{E}}{\partial t^2}$$
 (B4)

Now, consider a wave form which is one-dimensional, harmonic in time, and plane polarized. Such a wave can be represented by the wave function

$$E = E_{O} \exp \left[i(\gamma y - \omega t)\right]$$
 (B5)

The validity of equation (B5) is restricted to cases in which properties of the medium vary slightly over dimensions comparable to a wavelength.

Substitution of equation (B5) into equation (B4) results in

$$\mu \in \omega^2 - \gamma^2 + i(\sigma \mu \omega) = 0$$
 (B6)

which becomes

$$\alpha^2 - \beta^2 + \mu \in \omega^2 + i(\sigma \mu \omega - 2\alpha \beta) = 0$$
 (B7)

when the propagation factor is represented in complex form, $\gamma = \beta + i\alpha$.

Equating the real and imaginary parts of equation (B7) to zero gives a system of two simultaneous equations from which α and β can be determined, as follows:

$$\alpha = \omega \left[\frac{\mu \epsilon}{2} \left(\sqrt{1 + \frac{\sigma^2}{\epsilon^2 \omega^2}} - 1 \right) \right]^{1/2}$$
 (B8)

$$\beta = \omega \left[\frac{\mu \epsilon}{2} \left(\sqrt{1 + \frac{\sigma^2}{\epsilon^2 \omega^2}} + 1 \right) \right]^{1/2}$$
 (B9)

Inasmuch as equations (B8) and (B9) are valid only when properties of the medium vary slowly over a distance of 1 wavelength, a rough criterion can be set up which may be used in applying the calculations in this paper to a specific problem. Consider some linear distance L over which the plasma properties vary considerably. Then, the assumption used in selection of the wave function (B5) indicates that

$$\frac{\lambda}{L} \ll 1$$
 (B10)

must hold in order to assure accuracy. If this condition is not obtained, then the accuracy obtained in calculating α and β would be thought to diminish as the value of λ/L departs from a very small value and grows large. The value of λ may be considered to be the wavelength in the plasma adjacent to the body wall λ_B , and for a characteristic length L it is convenient to consider the effective plasma thickness d_e . Values of $\left(\lambda_B/d_e\right)D_n$ are given in table I. It is easy to see that for larger bodies (large D_n) the condition (BlO) can be more nearly fulfilled.

REFERENCES

- 1. Huber, Paul W., and Gooderum, Paul B. (With appendix A by Theo E. Sims and Duncan E. McIver, Jr., and appendix B by Joseph Burlock and William L. Grantham): Experiments With Plasmas Produced by Potassium-Seeded Cyanogen Oxygen Flames for Study of Radio Transmission at Simulated Reentry Vehicle Plasma Conditions. NASA TN D-627, 1961.
- 2. Gravalos, F. G., Edelfelt, I. H., and Emmons, H. W.: The Supersonic Flow About a Blunt Body of Revolution for Gases at Chemical Equilibrium. Tech. Inf. Series No. R58SD245 (Contract AF 04(645)24), Missile and Ord. Syst. Dept., Gen. Elec. Co., June 16, 1958.
- 3. Ridyard, H. W.: Comparison of the Ionized Shock Layer About Two- and Three-Dimensional Blunt Shapes at Hypersonic Speeds. Planetary and Space Sci., vol. 6, June 1961, pp. 10-23.
- 4. FitzGibbon, Sheila A.: Real Gas Supersonic Flow Field Solutions in the Shock Layer Around a 9° Sphere-Cone at Mach = 20.4, 21.4 and 21.2. Aerod. Data Memo No. 1:48, Missile and Space Vehicle Dept., Gen. Elec. Co., May 1961.
- 5. Ratcliffe, J. A.: The Magneto-Ionic Theory and Its Applications to the Ionosphere. Cambridge Univ. Press, 1959.
- 6. Langberg, E., Baldwin, K., and Yos, J.: Radiation and Propagation of Telemetry Signals During Hypersonic Reentry. IRE Proceedings of the 1958
 National Symposium on Telemetering, Section 3.2, Sept. 22-24, 1958, pp. 1-8.
- 7. Mitra, S. K.: The Upper Atmosphere. Second ed., The Asiatic Society (Calcutta, India), 1952. (Available from Hafner Pub. Co., New York.)
- 8. Schelkunoff, S. A.: Remarks Concerning Wave Propagation in Stratified Media. Communications on Pure and Appl. Math., vol. IV, no. 1, June 1951, pp. 117-128.
- 9. Hines, C. O.: Reflection of Waves From Varying Media. Quarterly Appl. Math., vol. XI, no. 1, Apr. 1953, pp. 9-31.
- 10. Stratton, Julius Adams: Electromagnetic Theory. McGraw-Hill Book Co., Inc., 1941.
- ll. Logan, J. G., Jr.: The Calculation of the Thermodynamic Properties of Air at High Temperatures. Rep. No. AD-1052-A-1 (AFOSR-TN-56-344, AD-95220), Cornell Aero. Lab., Inc., May 1956.
- 12. Logan, J. G., Jr., and Treanor, C. E.: Tables of Thermodynamic Properties of Air From 3,000° K to 10,000° K at Intervals of 100° K. Rep. No. BE-1007-A-3, Cornell Aero. Lab., Inc., Jan. 1957.
- 13. Delcroix, J. L.: Introduction to the Theory of Ionized Gases. Interscience Publ., Inc. (New York), 1960.

- 14. Spitzer, Lyman, Jr.: Physics of Fully Ionized Gases. Interscience Publ., Inc. (New York), 1956.
- 15. Ter Haar, D.: Introduction to the Physics of Many-Body Systems. Interscience Publ., Inc. (New York), 1958.
- 16. Feldman, Saul: Trails of Axi-Symmetric Hypersonic Blunt Bodies Flying Through the Atmosphere. Res. Rep. 82 (Contract No. DA-19-020-ORD-4765), Avco-Everett Res. Lab., Dec. 1959.
- 17. Bachynski, M. P., Johnston, T. W., and Shkarofsky, I. P.: Electromagnetic Properties of High-Temperature Air. Proc. IRE, vol. 48, no. 3, Mar. 1960, pp. 347-356.
- 18. Adams, Mac C., and Probstein, Ronald F.: On the Validity of Continuum Theory for Satellite and Hypersonic Flight Problems at High Altitudes. Jet Propulsion, vol. 28, no. 2, Feb. 1958, pp. 86-89.
- 19. Bortner, M. H.: The Effect of Errors in Rate Constants on Non-Equilibrium Shock Layer Electron Density Calculations. Planetary and Space Sci., vol. 6, June 1961, pp. 74-78.
- 20. Vaglio-Laurin, R., and Bloom, M. H.: Chemical Effects in External Hypersonic Flows. [Preprint] 1976-61, American Rocket Soc., Aug. 1961.
- 21. Sedney, Raymond: Some Aspects of Nonequilibrium Flows. Jour. Aerospace Sci., vol. 28, no. 3, Mar. 1961, pp. 189-196, 208.
- 22. Bloom, Martin H., and Steiger, Martin H.: Inviscid Flow With Nonequilibrium Molecular Dissociation for Pressure Distributions Encountered in Hypersonic Flight. Jour. Aerospace Sci., vol. 27, no. 11, Nov. 1960, pp. 821-835, 840.
- 23. Wray, Kurt L.: Chemical Kinetics of High Temperature Air. Hypersonic Flow Research, Frederick R. Riddell, ed., Academic Press (New York), 1962, pp. 181-204.
- 24. Wurster, Walter H., and Marrone, Paul V.: Study of Infrared Emission in Heated Air. Rep. No. QM-1373-A-4 (Contract DA-11-022-ORD-3130), Cornell Aero. Lab., Inc., July 1961.
- 25. Shklovsky, I. S. (Richard B. Rodman and Carlos M. Varsavsky, trans.): Cosmic Radio Waves. Harvard Univ. Press (Cambridge, Mass.), 1960.
- 26. Huber, Paul W.: Tables and Graphs of Normal-Shock Parameters at Hypersonic Mach Numbers and Selected Altitudes. NACA TN 4352, 1958.
- 27. Moeckel, W. E., and Weston, Kenneth C.: Composition and Thermodynamic Properties of Air in Chemical Equilibrium. NACA TN 4265, 1958.
- 28. Minzner, R. A., Champion, K. S. W., and Pond, H. L.: The ARDC Model Atmosphere, 1959. Air Force Surveys in Geophysics No. 115 (AFCRC-TR-59-267), Air Force Cambridge Res. Center, Aug. 1959.

TABLE 1.- ESTIMATES OF ATTENUATION, REFLECTION, AND EFFECTIVE PLASMA THICKNESS

AS FUNCTIONS OF BODY GEOMETRY AND REENTRY PARAMETERS

							_	_			_								-					_	_	_	0.1			_		٠.				-	-		-		_
(R10)	(**/B	0.9552	.9818	.9835	.9724	1676·	4628.	9532	2096	040	9338	22,68	9118	.9385	1400	1311000.		.7772	.9133	.9324		01.5	8550	4706.	. !		3661000.	£01000.	.0000556				.8572	.8810				. 7972	.8501		
m2 44 Cm	an/u-A.	544.94	562.6	556.9	576.3	1,582.9	195.0	102.4	111.9	393.7	3.813.4	4.29	0.074	1,372	200 100 100 100 100 100 100 100 100 100	166.3		1,293.5	322.2	323.4	•	- K	्रेट्ट	- - - - - - - - - -	-		25.5	6.7	69.9	1			536.5	6,700			1 1 1 1 1 1	1,016	2,410	4	
		22.980	9.362	8.694	15.830	43.102	8.190	5.635	3.770	10.920	108.3	2.390	13.90	330	5.450	3.063	,	127.93	25.67	55.49	-	14	88	112.7			3.080	5.057	3.040			-	113.9	1145.4				215	509		
	.թ. = 30,48 сп	42.6	15.97	16.46	11.03	5.15	8.88 88.	13.44	14.10	10.87	7,17	5.53	10.54	11.89	12.	0	-	5,49	8.63	62.6	!	רק נ	160	9.63	-		0	0			1 1 1 1	1 1	7.04	5.25	-		*****	3.822	2.512		11111
lb, for -	Dn = 25.40 cm	8.53	15.25	15.75	10.29	2,36	太。	13.50	14.10	10.20	2,79	5.53	10.53	11.48	24.	0		1.21	8.	9.11		47.	7.66	9.10	-		0	0	0	! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !		1	4.463	4.715			,	3.147	1.914		
(SL)R, db, for	ու = 20.32 cm	7.68	14.33	14.83	04.6	3.87	7.59	15.36	13.90	9,33	2.11	3.53	10.47	10.47	. 50	0		8.	7.14	6.27	1 1 1 1	94	5 7	8.8			0	0	0				3.793	4.008		1 1 1 1 1		2.410	1. 注2		
	$D_{\rm n} = 5.08~{\rm cm}$	3.15	8.69	9.15	4.42	.97	3.15	8.66	य:6	8.	-22	2.56	4.53	1.85	010	0	;	51.	2.78	٠٠٠ <i>٠</i>			19.	2.53			٥.	٠.	.01			!	51. 4 .5	.9751	1			.2720	.1075		1 1 1 1 1 1
4	u _r /ə	0.0422	7550.	.0338	.0275	.0272	02420	.0355	.0337	.0278	1820.	.0383	9620.	.0241	.0183	.018	Ç	666	1728	#C0T•		000	1905	5002	1	1 1 1	1207	092+	TT-				,2124	.2140	1		1 1	.2115	ц.	1	-
(ST). /n db./cm	A no and	0.100	.212	.222	.106	.653	.586	.637	.685	320	001.	1.740	1.555	.92	0	0	-	£.	50.	242.		061	88	.576	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		0	0	0	1 1			.142	.1527				.2763	.206	1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Altitude ft		100 × 10 ³	₹.	174	8	5,2	81	154	174	8	230	001	124	174	500	230		100 × 107	<u>†</u>	*	3 6	3.5	757	174	500	230	100	151 151	174	8 %	3	100 × 10 ³	154	174	800	230	100	154	174	8,5	470
, L	24. (*	30 × 10 ⁶				7	240 × 10c		•		``	10,000 × 10 ⁶		_			90,	201 ×				901 × 04%		-	•		10,000 × 10°				•	30 × 10 ⁶					540 × 100			-	
, u/ x	u.	0.17							_								(9														8.8									
		15										_									_						_						_		_						+
9		0																																			•				

TABLE I.- ESTIMATES OF ATTENUATION, REFLECTION, AND EFFECTIVE PLASMA THICKNESS AS FUNCTIONS OF BODY GEOMETRY AND REENTHY PARAMETERS - Continued

\ a/	(^K 12/B	9851 9851 9825 9797 9228	.9688 .9768 .9793 .9793 .0001333 .9503 .7135 .002785	.9577 .9821 .9842 .9817 .9753 .9700	.9786 .9800 .9732 .7219 .3182 .03145	.9%6 .9893 .8837 .8891 .8658 .778 .7179	.9803 .9797 .9407 .02049 .02153 .005525
7	ԴΒԿn/4e, c≡	173.6 84.59 89.9 191.9 1,238.1 66.00	59.07 106.1 574.2 8,091.9 129.6 961.9 53.12 15.42	204.72 81.22 89.90 5,612.0 80.06	1,391.9 29,281.3 482.4 193.5 49.71 69.29	293.8 88.46 106.04 466.4 18,612.0 122.8	3,061.5 129,443.7 52.59 41.77 55.94
	, ja	15.16 9.373 9.916 19.61 135.1 5.70	6.848 74.13 74.13 960.8 12.06 126.2 75.44 75.44	22.09 111.20 12.43 72.47 376.7 8.615	27.45 170.7 2,676.9 23.02 10.76 4.292 3.136	7.261 14.01 16.01 16.01 63.24 1,25 24.03	57.83 407.8 5,503.9 3.996 4.031 3.481
	Dր = 30.48 շա	15.23 17.25 17.32 12.86 11.12	15.06 16.78 16.78 7.690 7.575 13.04 5.428 .001042	13.21 17.50 18.05 16.80 8.317 9.753	16.70 16.27 9081 9.379 4.121 2337 001183	10.18 17.09 17.91 15.69 1.1003 8.303	17.06 14.03 .01015 .01093 .3553 .06357
db, for -	Dn = 25.40 cm	14.71 18.36 18.39 16.98 11.16	15.06 16.25 16.67 16.57 6.353 7.77 13.04 5.378 9.378	12.66 17.58 18.09 16.33 7.420 9.828	16.70 15.68 .6466 5.1069 5.613 .002752	9,491 17,15 17,92 15,05 15,05 8,256 15,42	17.04 12.78 .007050 .006286 .14/71 .08844
(SL)R, d	Dn = 20.32 cm	15.92 18.13 18.39 16.31 11.06	8.5.3.4 8.6.4.4.4.7.5.7.7.5.7.7.5.4.7.7.7.7.7.7.7.7	11.76 17.65 18.10 15.60 6.24 9.916	16.68 14.69 14.232 4.536 18.36 18.40 16.44 10.08035	8.6% 17.16 17.84 14.17 .531 7.980 15.41	16.98 11.17 .004515 .1340 .002791
	Dn = 5.08 cm	8.39 13.78 13.98 10.76 5.015 8.31	13.67 14.40 10.33 10.35 5417 6.652 5.414 7.617	6.411 13.58 13.58 9.94 1.36 13.38	13.62 6.432 .02769 .6213 .3073 .2032 .001712	3.848 12.92 13.41 8.3.86 0.3998 3.809 12.63	12.62 2.797 .002836 .1154 .1154 .1822 .05794
£	ae/n	0.0873 .1108 .1103 .1022 .1021	.1159 .1300 .1291 .1187 .0930 .1312 .6672	.1079 .1379 .1383 .1227 .1043 .1076	1386 1226 1226 109142 10575 10575 10575	1166 1584 1581 1576 1611 1611	.15801 .1532 .04252 .07598 .09650
(m) (m)	(Sω) Α/ υ _α υ, αυ/ οπ	0.319 .7313 .7766 .7273 .2220	2. 247 2. 1713 1. 0058 . 2508 3. 440 2. 222 2. 222 . 860 . 00186	278 .8159 .8869 .5063 .1162 .8195	1,747 2,536 .0368 .0368 .071 .00448 .000101	. 1924 . 8312 . 9042 . 09425 . 5883	1,4296 .4450 .01294 .0323 .00319 .00132
4	Altitude, It	100 × 10 ³ 154 174 200 230 100	444 200 200 444 200 200 200 200 200 200	100 × 10 ³ 154 174 200 230 100 100	42 88 10 10 10 10 10 10 10 10 10 10 10 10 10	100 × 10 ³ 15 ⁴ 17 ⁴ 200 230 230 100 15 ⁴	471 880 108 171 471 883 883
	I, cps	30 × 10 ⁶	10,000 × 10 ⁶	30 × 10 ⁶	10,000 × 10 ⁶	30 × 106	10,000 × 10 ⁶
-		0.50	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	8.1.8		2.8	
\vdash	× ×	18.1 0					
	deg	97					
1	0						

TABLE I.- ESTIMATES OF ATTENUATION, REFLECTION, AND EFFECTIVE FLASMA THICKNESS

AS FUNCTIONS OF BODY GEOMETRY AND REENTRY PARAMETERS - Continued

R ₁₂)_	n N		11.5 11.7 11.5 66	.005307 .005870 .002021 .00005792	755 775 775 775	. 9719 . 9819 . 9767	02217 08109
(R)			 	8888		1.282	88
, e, e, y		393.7 100.2 129.1 566.0	174.3 228.1 571.13 3,820.0	41.07 55.97 26.10 88.38	529 123.1 169.4 1,355.4	254.0 365.6 890.2 10,376.4	74.148 74.148 16.62
# C	ja R	44,44 16.63 21.60 81.8	19.58 37.45 94.52 538.0	3.364 3.541 2.539 3.036	58.2 20.65 28.69 176.6	27.65 61.09 149.6 1,263.8	3.295
	Dn = 70.48 cm	8.100 16.84 17.86 14.58	7.232 15.48 17.26 11.92	.05315 .07920 .0137 .01074	6.12 16.55 17.78 12.35	5.76 15.50 17.34 5.416	70T10.
o, for -	D _n = 25.40 cm			,02487 ,021 ,03498 ,006261	5.50 16.51 17.65 11.54	5.27 15.46 17.19 4.292	.03803
(SL)R, db, for	Dn = 20.32 cm	6.6102 16.79 17.64 12.97	6.362 15.44 17.05 8.85	.00009750 .01872 .01263 .00004170	4.76 16.26 17.31 10.52	4.62 15.33 16.80 3.145	0.087 0.005 0.005
AMPRICATION CO. C. P. C. C. P. C.	ம். = 5.08 வ	2.447 12.86 12.91 7.11	2.39 11.74 11.41 1.64	.02801 .07195 .02312 .005700	1.41 12.32 12.19 4.4.51	1.31 10.36 9.655 .2798	7.4560 00547
	re/m	0.1129 .1660 .1673 .1445	.1123 .1642 .1655 .1655	.08191 .09847 .09728	.11 .1677 .1694 .1303	.109 .1671 .1680 .1680	.09555
-5, 46 4/ (13)	(Say A) which	0.1450 .7967 .8682 .355	1,525 1,203 1,203 1,381	.0109 .00229 .00060 .00357	.1094 .7211 .7819 .2218	.338 1.225 .9867	.000959
	Articage, ic	100 × 10 ³ 15 ⁴ 17 ⁴ 200	889 174 174 189 189 189 189 189 189 189 189 189 189	230 100 174 200 230	100 × 10 ³ 15 ⁴ 17 ⁴ 200	284 175 884 175 884 884 884 884 884 884 884 884 884 88	230 100 154 200 200 200 200 200
	edo (1	30 × 10 ⁶	901 × 042	10,000 × 10 ⁶	30 × 10 ⁶	240 × 10 ⁶	10,000 × 10 ⁶
1	u _m / _x	3.50			5.00		
;	Ε	18.1					
	gao 'a	0					

TABLE I.- ESTIDATES OF ATTENUATION, REFLECTION, AND EFFECTIVE FLASMA THICKNESS
AS FUNCTIONS OF BODY GEOMETRY AND REBNIFY PARAMETERS - Continued

									: ہے											,	8 [~	; ;	7
(+c/B	0.9898 9864 1986	8,86	 80%	.9721	5626.	.9813	8,62	88.	.0039		53	5,8 5,8	3.85	979.	1368. 1368.		9806	.9787	. 55.	19960	.00076(7320	3.5	86. 15.	8. 8. 8. 8. 8. 8. 8.	.8460	97.59	. 9813 813	8	.1971	:60900		
	149.31 63.08 73.77	149.9	76.67	38.41 3.41	19:59 402.8	5,128.3	8, 6 8, 6	313.0	자.01	,	161.21	8.5	180.4	2,054.3	62.55	139.5	900.5	15,567.6	1.654.0	8.30	7.27	י קנס	55.56	48.13	6,278.1	89.25	7.50	1,957.8	14,684.5	31.14 67.07	51.49		
, A	15.51 7.607 9.907	18.07	5.793	4.705	63.76	741.7	8:13	109.8	3.4009	,	22.18	0.0 40.0	28.62	269.5	8.582	24.93	144.2	1,966.2	147.8	4.420	3.169	7	10.59	9.563	818.7	14.23	15.42	351.4	5,290.6	7.787	5.507		
որ = 30.48 cm	15.42 18.65 18.15	13.57	12:01	15.55	16.8 16.8	12.02	7.557	10.12	.006819	(35.89	17.90	17.48	11.81	9.675	19.79 18.48	17.01	7.721	15.83	.4321	.0003608	3	18.03	17.83	\$.5°	8.165	16.19	16.51	3863	\$25. \$2.	.02500		
D _n = 25.40 cm	15.05 18.68	17.47	10.11	15.55	16.82	10.51	14.97	10.12	608400.	ì	13.36	17.93	17.29	\$.0I	9.692	16.48	16.82	\$ 0° 0	13.80	.5601	.00155	13.00	18.03	17.8 2.71	5.386 5.386	8.228	16.19 16.85	15.81	.2281	1.6450	.08682		
D _n = 20.32 cm	14.37 18.81 18.30	17.05	17.71 18.08	15.55	16.73	8.728	- 5. 5. 2. 5. 5.	10.12	.003119	١	12.63	17.0%	16. 18. 18. 18. 18. 18. 18. 18. 18. 18. 18	9.857	9.77 E	16. 18.	16.36	 	13.59	.09305	.008568	8.5	18.06	17.86		8.255	16.19	14.67	.1469	2.7912	.01175	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
Dn = 5.08 cm	8.884 15.75 14.67	77.11	8.772	15.07	; i	1.4998	12.41	6.888	.0002015	(7.258	9.5	. T	5.550	7.209	75.57	₹20.6	.1524	5.081	. 3882	.009590	180	15.74	₹. 4.	.5753	4.72	15. \$	ZŽ.	.009296	.9769	.1048		
ц. /a.	0.1039 .1206	1205	.10222	1225	1583	941. 941.	8 8 8 8 8 8 8	3508	.3290	`	.1376		1587	.1312	.1372	1791	.1601	1263	.08937	1221	5101.	0191	19061	1987	± ± ±	.1594	865	.1795	\$7.	841	7632		
Mary Alans and and	4075.0 39359.	57.49. 57.48.	1.0753	2.956	1.3303	. 5725	4.040	1.649	69600.	-	704.	1.1952 1111	7.707.	.1909	1.0359	2.2865	±526.	.18102	1,563	547∞.	.000290	× × × × × × × × × × × × × × × × × × ×	1.270	1,1335	. 9886 7886	8008	3.0892	1,941	5470.	.0269	.00245		
		0 6			50 t	230	84	14	0 0 0 0 0 0			1.7±	<u>+</u> 002			きされ	SO.	8,8	12,5	171	88			174				* 80 1 80 1 80	230	3 \$	174	2 S	
مرات ر ب	30 × 10 ⁶		240 × 106			9-	10,000 × 100			9	% × 10°			7	240 × 10			900 000 01	-01 × 000 '01			901 > 02	2			240 × 10 ^b			900	10,000 × 10°			
₩./.	0.50										8.				-		_																
ξ.	18.24																															•	1
0, 158	0																											_	* -				
	$\frac{1}{2} \int_{0}^{2} \frac{1}{2} \int_$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0 18.24 0.59 30 x 10 ⁶ 100 x 10 ⁵ 0.704 0.59 8.894 11.37 11.59 11.50 1	0 18.24 0.59 90 x 10 ⁶ 110 x 10 ² 0 x 70 ⁴ 110 x 10 ² 0 x 884 11, x 1 15.05 11, t 10.05 11, t 10.0	0 18.24 0.99 yo x 10 ⁶ 1100 x 103 10.00 10.09 8.84 11.00 11	19.00	0 13.84 0.59 70 x 10 ² 100 x 10 ² 0.774 10.1039 8.89 18.4 13.7 15.6 18.5 18.5 18.5 18.5 18.5 18.5 18.5 18.5	15-40 15-4	0 1554 0.79	0 15.00	0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0 13.54 0.79 yo x 10 ⁵ 1100 x 10 ⁵ 0.70 d 10.54 10 d 10.5 d 10.	1,000 1,00

TABLE 1.- ESTIMATES OF ATTENUATION, REFLECTION, AND EFFECTIVE PLASMA THICKNESS

AS FUNCTIONS OF BODY GEOMETRY AND REENTRY PARAMETERS - Continued

(R,0)	(_T <th>0.9150</th> <th>9828</th> <th>.9827</th> <th>.9807</th> <th>. 9663</th> <th>.8055</th> <th>.9752</th> <th>986.</th> <th>.9799</th> <th>.7851</th> <th>.002985</th> <th>7544.</th> <th>.002050</th> <th></th> <th></th> <th>.8963</th> <th>.9825</th> <th>.9825</th> <th>.9796</th> <th>77.45</th> <th>\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\</th> <th>986</th> <th>.9787</th> <th></th> <th>612200.</th> <th>.01580</th> <th>-</th> <th></th> <th>_</th>	0.9150	9828	.9827	.9807	. 9663	.8055	.9752	986.	.9799	.7851	.002985	7544.	.002050			.8963	.9825	.9825	.9796	77.45	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	986	.9787		612200.	.01580	-		_
7 4	Δβυη/αe, cm	307.7	59.19	104-1	507.9	35,097.0	74.0	104.7	8 ま	3,575.2	66,791.7	31.14	38.35	26.81			402.3	65.86	14.8	828.0	180.0	151.7	671.0	6,210.0		29.33	\$ \$ 6 6	17.07		
1	Ē P	24.94	12.28	21.27	8.8	1,813.5	20.21	21.5	87.91	619.9	2,026.5	3.250	4.597	3.284			57.93	13.97	27.67	146.3	8	3.5	137.1	1,046.0		3.165	5.961	(1+./		
	Dn = 30.48 cm	8.836	17.65	17.63	なら	. 3882	7.211	16.05	16.98	13.90	424200.	0000310	.6931	£02.			7.065	17.56	17.58	14.64	6 282	9,9	17.11	9.8		.0007187	.0003743	(t oo.		
db, for -	Dn = 25.40 cm	8.163	17.56	17.63	15.33	.2766	7.115	16.05	16.97	12.52	.001684	80040.	.5041	.003764			6.4152	17.57	17.55	13.90	7.06×	78,75	17.06	8.36		7,22,000.	2083	1000) 1) 1) 1) 1) 1 1 1 1 1	
(SL)R, d	Dn = 20.32 cm	7. 337	17.69	17.58	34.48	181,	6.787	16.05	16.91	10.75	620100.	.03267	.01582	.03539			5,6424	17.61	17.39	15.94	107.4	16.27	16.89	6.65		.01071	1981.	01+10.		
	Ph = 5.08 cm	2.925	15.17	13.47	8.527	.01204	5.869	14.72	12.33	2.337	09890000	.03735	9424.	690£0.			1.8719	14.74	12.76	47.6	7850	14 35	10.79	.87		.009781	.2052			
£	ae/un	0.1510	.2074	503.	.1779	.05167	.15012	.2059	. 2022	¥71.	4050.	107	.1181	.1225			1,440	9115.	.2053	.177	Ac.1.	21115	5	.1683	-	.1079	.1260	<u>, , , , , , , , , , , , , , , , , , , </u>		
(FT) (F. 44. (TD)	(SL)A/Ln, ab/cm	0.1852	1.250	1.029	.4503	,0224	.5699	2.678	1.472	174.	178100	42410.	.00915	.000802			.1455	1.216	9266	· \$5	1144	100%	1.212	. 339		.00550	24400.	trom.		
41444	Altitude, it	100 × 103	174	174	500	230	100	7.5	174	8	230	100	151	174	8	230	100×10^{3}	154	174	200	8, 5	25 T	171	500	230	700	Žį.	7 000	2,50	
4	r, cps	30 × 10 ⁶				`	240 × 10°				,	10,000 × 10 ⁶					30 × 10 ⁶				901 > 016	24 2 24 3			`	10,000 × 10 ⁶				
4	u _d /x	3.50		_										_																
,	Ε.	18.24						_																						
1	д , дев	0																												

TABLE I.- ESTIMATES OF ATTENUATION, REFLECTION, AND EFFECTIVE PLASMA THICKNESS
AS FUNCTIONS OF BODY GEOMETRY AND REENTRY PARAMETERS - Continued

Γ								1							n 1					φ <u>ς</u>	8 1
(B,)	(t <td>0.9792 .9886 .9868</td> <td>9861</td> <td>744.0</td> <td>9787</td> <td>7986.</td> <td>9.8.8 8.7.8.8</td> <td>.01443</td> <td>.9854</td> <td></td> <td>9,9702</td> <td>. 980. 7.880.</td> <td></td> <td>. 10437 72401.</td> <td>(620)</td> <td></td> <td> 7,88,8 7,78,88</td> <td>976. 1989.</td> <td> 8,8,1 8,0,8</td> <td>. 1230</td> <td>.00c75</td>	0.9792 .9886 .9868	9861	744.0	9787	7986.	9.8.8 8.7.8.8	.01443	.9854		9,9702	. 980. 7.880.		. 10437 72401.	(620)		 7,88,8 7,78,88	976. 1989.	 8,8,1 8,0,8	. 1230	.00c75
7 4 6	γΒυη/α _e , cm	121.87 65.991	131.3		74.45	3,845.0	750.4 1.088.5	12.36	117.8	67.6	1,444.7 45.65	133.4	11,062.7	2,827.4 61.74 27.202	603.16	141.03 62.83 78.40	5,064.2	24.8.9 24.8.9	1,389.9 24,502	67.125 33.28	52.39
		10.664 7.589 8.4%	13.73	3.97	10.20	1.90.7	105.02	3.8153	14.07	10.48 20.44	165.9 5.437	85.59 85.89 85.89	1,243.6	175.29 5.859 3.331	7:2:7	19.49	35.25	17.12 17.12 15.28	2,962.3	6.236 5.836	3.164
	որ = 30.48 cm	17.17 18.72 18.81	18.60	12.57	16.71	16.10	14.47	46210.	16.0	18.57	11.36	17.14 18.14	8.132 8.132 8.490	12.63 .006125 041381	to to	14.58	13.59	16.25 17.56	18.25 5.630 5.630	05.140 -2014 -06619	.003055
db, for -	D _n = 25.40 cm	17.05 18.77 18.85	18.52	12.57	16.71	8.41 80.41	14.47	.02618	15.93	18.58 18.58	7.1.2 9.2.2 9.2.2 9.2.2	17.14	7.652	11.17 -242.	12210	14.29 18.01 18.49	8.54 78.88	10.42 16.25 17.56	2.751	1.052	.0001207
(SL)R, d	Dn = 20.32 cm	16.60 18.90 18.95	18.22	12.57	16.71	13.10	14.47	.1488	15.53	18.64 18.32	13.63	17.14	6.025 8.489	9.427 1.3873 004815	5 (13.67 18.06					
	D _n = 5.08 cm	11.20	13.13	11.03	15.61	(大) (大) (大)	12.03	.07202	10.24	15.58	10.13	3.85	6.375	1.021	67630.	8.299 15.23 15.16	12.46 4.024 9.024	14.84	8.905 1444 .1444	.5405	
-	₹ •	0.0875	3401.	.08618	.1370	.1275	9061	.3086	4611.	.1551	1911.	1591	1274 18721	.06129 .0949 .0808	200	1738	1289	1733	1209	.0929	.06039
(SE) 4b (d) (CE)	(m/A/m) m/m	0.4535 .9248 .9450	.7099	1.316	2.755	4819	2.13	.00726	.4729	1.1402	.2680 1.417 2 502	2.376	2.86	.8163 .01057 0006		.3997	.1918	2.579 1.925	.1746	.01452	45,000.
Altitude. ft	or Cappa	100 × 10 ³ 15 ⁴ 17 ⁴	230 230	.83	17' ₄ 200	£ 50 5	75. 12. 12.	88	100 × 10 ³ 154	174 200	001 100 130	17.00	230	154 174 200	2,32	100 × 103 154 174	00 00 00 00 00 00 00 00 00 00 00 00 00	124	888	252	200
f. cns	8d 1	30 × 10 ⁶	`	240 × 10 ⁶		901 > 000 01			30 × 106		240 × 106		10,000 × 10 ⁶			30 × 106	901 > 016	OT < 0.50	901 × 000 01	-01 < 000 (01	
را / x	u., /v	0.50							7.00							2.8					
×		19.25																			
A de	, i	0																,			

TABLE 1.- ESTIMATES OF ATTENUATION, REFLECTION, AND EFFECTIVE PLASMA TRICKNESS

AS FUNCTIONS OF BODY GEOMETRY AND REENTRY PARAMETERS - Continued

100	3	, 		A) + i + i, do	(cr), /n dh/cm	£/		(SL)R, d	db, for -			, G , G ,	(R12)
		u- / -	r) cha		Alan (an) (an)	F/9	ր _ր = 5.08 cm	Ֆը = 20.32 cm	D _n = 25.40 cm	D _n = 30.48 cm	#> (₽/	'Bun/ue, c≡	(tc/B
٥	19.25	3.50	30 × 106	100 × 10 ³	0.3157	0.1418	6.411	11.71	12.50	13.03	25.601	180.5	0.9522
	`			7.7	1,1503	.1892	14.78	17.85	17.80	17.80	12.96	68.48	.9833
				174	1.167	.1889	æ.±.	18.49	18.49	18.48	17.36	16.16	.9878
	_			500	9119.	1602	1.8	17.59	18.21	18.56	53.58	いま?	. 9872
			`	230	.12703	. 4869	1.549	7.5%	8.818	9.880	759.146	1,559.8	. 9858
			5#0 × 10p	700	.9768	ት ፒቲፒ፣	6.361	9.599	9.245	9.511	11.17	79.03	.8878
				154	2.272	.1897	14.47	16.43	16.43	16.43	8.09	148.1	.9773
		_		174	1.678	1880t	14.02	17.82	£.71	17.84	71.59	780.7	.83%
				800	.6952	.1582	6.523	16.20	17.39	18.07	364.1	2,301.3	.9867
				230	₹o1.	.1091	.02827	.4358	6299.	84.	5,470.4	50,141.2	±8.
			10,000 × 10 ⁶	100	.05791	.08881	.3306	.5174	1101.	60980.	5.0	26.3	.06310
				<u>4</u>	.00563	.1203	. 2820	.1323	6/14.	.1762	121.4	7.8	.024 9 2
				174	915100.	.1242	£62L0.	. 08589	.2416	.02744	3.456	27.828	.005056
				500						1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1		1 1 1 1 1 1 1
				230	* * * * * * * * * * * * * * * * * * * *		1	1	1				
		8.	30 × 106	100 × 10 ³	.2351	.1335	4.596	9.596	10.45	п.п	32.73	245.13	84.
	_			154	1.0878	.1829	14.38	17.89	17.86	17.8	14.45	79.01	.9835
				174	1.0学	.1812	14.16	18.44	18.53	18.54	21.72	119.9	.9860
		_		88	5373	.1583	10.93	16.88	17.65	18.16	76.95	1.98	.9872
			_	530	.0785	.1058	- ZZ-	3.525	4.569	5.520	1,530.8	12,580.7	0486.
			5#0 × 10 ₀	90	.7303	.1330	4.5309	8.604	8.757	8.759	15.8	114.7	.8650
_				154	1.914	.1820	15.95	16.75	16.76	16.76	39.65	217.8	.9789
_				174	1.353	.1800	12.68	17.95	18.04	18.07	106.14	591.5	₹8.
				8,00	.5557	.1548	4.238	₹. 1.	15.72	16.91	2.65	3,546.2	.9868
			7	230	.04835	07970.	.00,5859	.06142	• 09573	.1375	8,602.7	107,938	1 086.
			10,000 × 10 ⁵	97	.0178	86.	09980.	.005905	.1067	.1295	3.632	72.8X	.009176
•				154	.00287	.1137	.1402	.09259	.1982	まれる。	3.729	32.91	.01181
				174	.000586	.1046	.02897	.02482	.03565	.001866	3.3017	71.56	.002321
				82		!							
				230									1

TABLE I.- ESTIMATES OF ATTENUATION, REFLECTION, AND EFFECTIVE PLASMA THICKNESS

per
Contimed
٠
PARAMETERS
REENTRY
AND
GEOMETRY
BODY
Q.
S FUNCTIONS
AS

(R ₁₂)_	(F./B)	0.8737 .8839 .9430 .9643 .9119	. 6866 . 7138 . 8839 . 9395 . 8862	.0480 .0176 .0033 .0055	.7822 .8012 .9098 .9293	.5596 .5566 .5406	.000755
7. J. J. Cm.	in in its	25 52 55 86 57 52 52	290.5 242.6 192.9 235.0	55.3 28.16 18.57 26.93	2,776 2,458 594 578	1,012	85.9 4.779.1
Ę		67.7 82.32 82.19 1.8	25.28 29.28 29.28 29.28	7.287 5.866 5.866 5.478 5.478	123.5 112.8 58.5 57.2	128.1 128.1	3.16 3.10 3.05 3.035
	ր = 30.48 cm	4,10 5.01 10.24 13.22 5.21	45.954 45288	8866	.60 .81 .7.7 .7.45	.787 .787 5.83 6.41	
, for -	Dn = 25.40 cm	82.74 92.74 12.24 16.1	4.3.8.14 3.88.85 5.99	3.00.00	65.00	547. 617 5.16 5.57	
(SL)R, db, for	Dn = 20.32 cm	2.98 3.77 8.68 11.67 3.93		.		3.4.4. 5.7.8.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0	
	Dn = 5.08 cm	0.65 28.87 48.69 19.69	6854	र थथश्रञ्ज	. 032 . 048 11.46 2.03	59.19.	
5	다./əə	0.0856 6360. 6360. 6360.	2880 5480 5480 5480 5480 5480 5480 5480 5	. 19775 . 13775 . 1811 . 1291	. 945. . 988. . 999.	.0986 .0986	.0368 .0392 .0725
, a 4 (22)	(SL)A/Dn, db/cm	0.0692 .0851 .1818 .2553	1928 1928 1943 5610 5747	. 1,500 . 180 . 1210	.01973 .02257 .1116 .1576	. 287 287 287 285 2853	
	Altitude, ft	1		288 4 4 5 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8			2,500 4,44,500 6,5
	f, cps	30 × 106	240 × 10 ⁶	10,000 × 10 ⁶	30 × 106	240 × 106	10,000 × 10 ⁶
	×/Dn	0.42			8 %		
-	X	15			<u></u>		
1	9, deg	6					

TABLE I.- ESTIMATES OF ATTENUATION, REFLECTION, AND REFECTIVE FLASMA THICKNESS
AS FUNCTIONS OF BODY GEOMETRY AND REENTRY PARAMETERS - Continued

(R10)	1 +4/B	0.7354 .7594 .8806 .9028			. 7276 . 7461 . 8715 . 8959		
2	'B-n/n-e,	5,115 5,455 1,310 1,435	1,877 2,353 1,968 4,360	118.5	7,825 7,330 1,936 2,207	2,857 2,907 3,130 7,125	163.6
	j j	154.7 141.0 85.9	55.75 55.0 55.0 127.9 286.8	3.07 5.00 5.00 7.00	160.0 150.1 95.3 109.0	57.7 59.0 152.8 345.6	8.5.5.4 4.0.5.4 4.0.5.4
	Dn = 30.48 cm	0.17 0.18 2.95 5.45	31. 34. 21. 98.1. 35.1.			.07	
lb, for -	Dn = 25.40 cm	0 . 2 . 5 . 5 . 5 . 5 . 5 . 5 . 5 . 5 . 5	a i i i i			8. 8.	
(SL)R, db, for	D _h = 20.72 cm	0.08 .092 ?.02 2.41				₹. 2 .	
	Dn = 5.08 cm	0.01 .0072 .35 44.	88.48		.0027 .0036 .17 .20	8.05 8.05 8.05	
£	F/-	0.03025 .02584 .0656 .0656	.02578 .02578 .065	. 384 . 384	020. 020. 020. 040.	. 0202 . 0203 . 0488	.01873
	m /an 'un' /V/ma'	0.0107 .01022 .0543 .063	.02985 .02725 .1202 .0997	0 01043	47.50.		
A1+1+130	Arricade, 10	85 × 103 100 154 174	888 884 44	88.888 11.74 11.08	85 × 10 ³	888844	888 888 888 888 888 888 888 888 888 88
4	ado (1	30 × 106	240 × 106	10,000 × 10 ⁶	30 × 10 ⁶	240 × 106	10,000 × 10 ⁶
	u _d /v	3.			5.20		
2		15					
1	a, deg	6					

TABLE I.- ESTIMATES OF ATTENUATION, REFLECTION, AND EFFECTIVE FLASMA THICKNESS
AS FUNCTIONS OF BODY GEOMETRY AND REENTRY PARAMETERS - Continued

(R12)	(+4/B	0.7145	.7402	.8732	.8925	1	-	7005	.4613	.8151	† 1 98.		-	1	1	11111			1	7117.	.7372	.8683	9168.	!!!!!	1	.3962	.4569	.8081	.8635	1	1		-		-		:
£/ E-4	Abm/e, ca	8,070	7,290	2,160	2,938			2,950	2,917	3,666	9,820	1		163.8	161.7				1 1 1 1 1	7,965	10,250	2,430	2,863		1 1 1 1 1 1	2,920	4,087	4,100	9,630	1 1 1		161.6	212.8	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	-		1
<u>ا</u> لر	₩,	169.1	154.3	95.1	114.8		1 1	60.8	60.8	158.3	371.0			3.056	3.036	3.014	3,006		-	171.2	156.5	8.3	117.5		1	9.19	61.8	165.7	385.0	1	1	3.055	5.053	3.01	3.01		
	Ֆր = 30.և8 շո	0.066	- %	1.72	1.59			1 1 1		92.			1 4 - 1 -		1	1 1				790.	.052	1.45	1.62		1 1 1			-					:	1	-		-
b, for -	Dn = 25.40 cm	0.048	0,00	1,41	1.29					×.					1 1 1	1 1 1	1		-	840.	750.	1.17	1.22	-	1		1	-							-		
(SL)R, db, for	D _n = 20.32 cm	0.032	후.	 8,	8.	!	1 1 1	1		æ.			:	:	-		1		-	. o.	.025	8	1.0		-	:	1 1		-		-	:	1	1	-		
	Dn = 5.08 cm	0.0023	まる.	† ī.	ੜ.		-		* * * * * * * *	.03		1 1 1 1		-			: : : : : :			.0023	7100.	7	ય	-		-	:	1 1 1 1 1				1 1 1					
£	r. P	0.02096	97770.	₹.	.0391		1 1 1	.0206	02085	8	.0378	1	1 1 1	.01865	.01877				1	.0215	.01526	0.00	₹ 10 10 10 10 10 10 10 10 10 10 10 10 10	1		.0211	.01512	する。	040.			.0189	.01425	-			
	A/vn, cm/cm/		1	0.0339	.03235		1 1 1 1	0	.0222	.0703	.04725	1 1 1 1 1		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1								.0302	.0335	!		.01905	.01585	88.	.04865			1 1 1	1 1 1 1 1 1			-	1
+4	Arcinge, in		8.	<u> </u>	174	500	230	95	100	154	174	500				154	174	500	230			売	174	500	230	36	100	154	174	500				154	174	500	230
, sec	r) cha	30 × 10 ⁶		_				540 × 10 ⁶						10,000 × 10 ⁶						30 × 05						240 × 10 ^b						10,000 × 10 ⁶					
۲,	η. /×	6.50																		7.82							_					_					
2	Ę	53																									•										
200	San 'o	6																													-						

TABLE I.- ESTIMATES OF ATTENUATION, REFLECTION, AND EFFECTIVE PLASMA THICKNESS

AS FUNCTIONS OF BODY GEOMETRY AND REENTRY PARAMETERS - Continued

(a)	(^{r,12})B	0.99069 .9907±	. 99206 . 98999 . 98816	.97739 .9741⊃	. 197911 . 9764 . 9798	.968 .9670 .9670	.9887 .9895 .9909	9889 9899 9899 9799 7579	.9767 .9767 .9827 .4428	. 8765 . 9549 . 9659 . 9715	9863 9863 9888 1888	4789. 5789. 5789. 7479.	.9778 .9813 .9860 .5287	. 9472 . 948 . 958 . 5200
	λ _B Dn/d _e , cm	99.7	99.5 107.5 151.9	25.5	27.97 28.98 141.99 5.66	6.69 118.3 716.2 3.639	94.44 87.1 63.6	98.9 189.8 73.5 11.15	29.62 65.20 374.60	289.6 1,364 1,464	90.00 77.8 63.4 71.8	108.0 278.7 32.1 28.16 30.1	46.75 150.5 120.5 6.78 19.47	300 972 4,740 31.5
,	# # # # # # # # # # # # # # # # # # #	4.678 4.651	4.059 5.301 7.186	1.655	1.549 6.929 265.5	. 326 4.908 27.05 171.0	7.507	0.476 0.04 0.016 1.893	: 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5.	6.28 86.6 98.6 6.32	8.085 6.963 5.797 6.369	8.812 22.16 2.87 2.52 2.703	4.38 14.4 115.7 1.98	38.2 96.0 197.6 7.306
	D _n = 30.48 cm	20.57 20.56	21.25 20.27 19.34	15.83 15.88	16.80 16.85 16.85 8.17	8.79 13.89 14.81 15.11	19.67 19.91 20.41		16.35 16.35 17.75 14.75	- 9,11,19,0 - 9,5,11,0 - 9,0,11,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0	18.12 18.66 19.62 19.50	19.09 18.23 13.52 14.26	16.54 17.27 18.18 6.68 9.55	14.6 15.7
db, for -	Dn = 25.40 cm	20.68 20.70	21.35 20.30 19.00	15.83 15.83	16.86 16.84 8.17	8.79 13.89 14.81 14.31	19.82 20.08 20.46	998334 885848	16.28 16.38 17.11 17.13	. 6.5. 1.5.5. 1.5.5. 1.82.	18.28 18.81 19.66 19.57	19.11 17.72 14.85.52 19.96	16.54 17.27 17.78 6.68	74.04 00.00
(SL)R, d	$D_{\rm n}$ = 20.32 cm	20.53 20.62	20.25 20.04 24.84	15.82 15.87	16.80 16.77 16.77 8.17	8.79 13.89 14.81 12.39	19.75 20.13 20.63		16.32 17.07 17.07	1,25 1,25 1,4.6 1,4.4	18.29 18.98 18.81 19.71	18.93 15.52 14.36 15.88	16.54	23.5
	Dn = 5.08 cm	15.43 15.66	16.13 14.81 12.70	15.19 15.37	15.89 12.73 8.17	8.79 15.79 12.23 1.51	14.83 15.48 17.44	14.14.55 25.03.72		2.5.4. 2.5.4. 2.5.5 20.7.	13.55 14.85 16.67 16.08	13.19 13.19 13.19 13.73	7.4 7.4 7.4 7.8 7.8 7.9 7.9 7.9 7.9	10.7
	$^{\mathrm{d}}\mathbf{e}/\mathrm{D}_{\mathrm{n}}$	0.0469	.0408 .049. .0473	69 4 0. 69∓0.	8045 2488 8488 8648	. 9487 . 9524 . 9415	.0603 .0609 .0731	88888 578888 578888	. 58.5.5 18.58.8	. 188. 188. 178. 178. 178. 178. 178.	.0898 .0902 .0915		. 0923 . 0957 . 0861 . 1016	.0988 .0417 .01.
	(SL)A/Dn, db/cm	0.548 .575		1.55	1.669 1.659 1.194 10.25	7.11 5.708 5.332 1.032	.578 .628 .75	. 620 . 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.		88888 88888	.607 117. 019.		2.65 1.753 11.93 12.80	6.1 3.32 0 .299
	Altitude, ft	60 × 10 ³	1	09 O	7.7.8.8.9 7.7.8.8.9	100 174 200 300 300	60 × 10 ³ 100 154 17t	188883	174 280 280 280 290	102 174 280 280 280 280	60 × 10 ³ 100 15 ⁴ 17 ⁴	888 75 100 100 100 100 100 100 100 100 100 10	200 200 200 200 100	154 174 280 280
	f, cps	30 × 106		240 × 10°	10,000 × 10 ⁶		30 × 10 ⁶	240 × 10 ⁶	90 × 000) ()) 1	30 × 10 ⁶	240 × 106	10,000 × 106	
!	×/Dn	0.1333					992.				. 422		** 45*45.	
	Ж Ж	%											·····	
	9, deg	6						–						

TABLE I.- ESTIMATES OF ATTENUATION, REFLECTION, AND EFFECTIVE FLASMA THICKNESS
AS FUNCTIONS OF BODY GEOMETRY AND REENTRY PARAMETERS - Continued

(R12)	ед\	0.9739	. 9878 7.78	6. 6. 6. 6.		.9286	26.5 27.5 27.5 27.5 27.5 27.5 27.5 27.5 27	9,69	. s.	9886	. 7272	9,5	1.7. 1.8.	.0108	.0002	9865	978	.987	.9875	1086.		0946	. ±286.	.9861	8	.6827	₹ 0000	. 86%		0000	
7) 4	Aβun/ue, cm	141.8	09.64	ک م تر	655.4	50.8		7.8	457.0	4,815.0	19.02 . 76	, 5, 5, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	8,000.0	%	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	182.1	8 7.3 7.4	70.3	156.9	1,233.0	62.5	, t	139.6	753.0	10,210	17 18	176.8	2,643	200	2.2.	
	i de	13.26	6.92	0.10	65.28	4.73	3.457	;_ % = :=	36.	165.0	1.535	ره.) د امر	231.0	3.7	3.08±	17.10	7.271	9.460	18.58	121.8	6.12		18.85	8	917	2.428	13.24	135.6	17.17 7.17.77	8	
	Dy = 30.48 cm	16.12 17.56	19.15	19.05	17.87	34.11	13.23	16.22	18.14	15.66	5.63	8.5	5.19	- 1	1	14.38	19.05	18.99	19.02	17.36	10.41	74.27	17.53	18.50	11.69	8. .	10.02	15.0	56.4		
db, for -	Dn = 25.40 cm	15.81	19.14	8.6	17.90	11.45	13.23	16.22	18.18.	14.28	5.6	9, i	7.4			14.01	7. 20.00	19.01	18.91	16.48	10.47	CK-37	17.53	18.30	10.14	86.7	10.02	8.41	C. 30		
(SL)R, di	D _n = 20.32 cm	15.17	19.17	19.13	0,91	1.5	15.23	16.22	18.0	12.55	5.6	8.8	8.5		!	13.19	16.55 51.91	19.07	18.58	15.49	10.63	3.5	10.2/	28.5	8.8	86. ₄	10.02	13.91	2.22		_
	Dn = 5.08 cm	9.67	17.22	16.58	15.97	95.6	12.87	16.01	13.11	3.5	5.65	6.73	\$ 6 6	: :		7.71	5.55 5.55 5.55	15.83	13.47	8.6	7.66	12.21	15.03	25.5	1:37	8.	9.08	2.25	8.	! !	
	$^{\mathrm{d}}\mathrm{e}/^{\mathrm{D}}\mathrm{n}$	0.0935	12,2	1,406	12.00	 	1081	.139	1222	86	.0807	25,5	980	8.		6260.	.1079	. E.E.	11.8	.09878	.093e	CL01:	5,7	R & E	88	-0762	6470.	.0513	17. F.	3	
	(SL)A/Dn, db/cm	0.386	1.2%	1.198	£.	1.98	1.92	3.67	8.7	.4065	6.55	 表さ い。	3. ₇ .		P	.301	.593	1,092	.772	70%	.855	1.772	5.197		. 285	4.508	3.76	1.26	, 010 0	0	
	Altitude, ft	60 × 10 ³	\$\frac{1}{2}	174	00.00	3,9	100	154	172			_	154	500.	230		100	174	. 8				ָּבְּלְיִנְיִּ בְּלֵינִי	± 6				121	174	200	ζ,
	f, cps	30 × 10 ⁶				901 × 040					10,000 × 10 ⁶					30 × 10 ⁶					240 × 106					10,000 × 10 ⁶	`				
	х/Dn	2.333														4.000															
	×	8																						_							
	θ, deg	6						_		•																					

TABLE 1.- ESTIMATES OF ATTENUATION, REFLECTION, AND EFFECTIVE PLASMA THICKNESS

- Continued	
PARAMETERS	
REENTHY	
AND	
GEOMETRY	
BODY	
g	
AS FUNCTIONS	

(B, 2)	8/2T\	0.9673 .9780 .9468	8. 4. 7.	86. 9116.	25.450	9828	8.8. 28.8.	.7000	.891. 7.87.	₹.	.0027	.9728	186.	8.8 5.15		9528	282.	8.8 8.8 8.6 8.6 8.6	7447.	128	. 8 . 8	.00013
3	'B ^D n/αe, cπ	229.1 136.7 82.07	91.2	1,771.2	53.3	1.3.5	1,261	16.8	328.5 8,440	142.9	95.5	254.6	100.7	237.3	1,695.1	5.5	185.0	1,020.0	53.3	8,760	171.4	
!	Į P	16.67	9.839	126.8 9.86.8	, ± «	21.43	112.5	2.65	16.75	8	3.33	13.82	1.2	z, 7. 2.7.	89.33 26.33	5.50	13.50	65.10 660	2.17	138.3	7.63	3.065
	Dn = 30.48 cm	13.95 16.88	19.02	15.41	12.48	17.64	18.16 8.69	5.53	9.64 5.49	2.56		14.36	19.06	19.17	15.12	13.25	17.29	17.83 8.73	5.93	5.55	29.	
db, for -	Dn = 25.40 cm	15.28	19.67	25.75	25.5	17.64	17.72	5.63		2.29		13.65	19.13	19.15	14.21	13.26	17.28	17.35	5.93	4.15	1	1 1
(SL)R, dl	D _n = 20.32 cm	12.40	19.03	: 1; 5 4,8%	12.51	17.62	16.92	5.23	9.64	;₫ 		12.76	19.00	18.88	13.30	\$ 5. \$ 5.	17.23	16.56	25.55	2.85	28.	
	Dn = 5.08 cm	6.95	74. 878.		10.43	14.39 14.39	9.15	18.	5.52	91.	! !	8.5	3.6.	13.74	6.97	10,5	13.53 8.45 8.45	9.42	5.5	<u>ક</u> ્તા	- 05	: :
	ge/p	0.7276	1079	. v2159	988	5011.	888	.05665	.051	.0487	6260.	95429.	07492	.0451	.0527 of 285	, 15 12 12 12 13 13 13 13 13 13 13 13 13 13 13 13 13	.074	8. 8. 29.	2007	8.6.6.	978	02120
1	(SL)A/Dn, db/cm	0.239	889	212.	1.225	1.742	695	3.76	2,12	9	99	.215	625	.624 .57	.188	1.11	8 <u>8</u>	.637	2.97	25. 25.	.0878	79
	Altitude, ft	60 × 10 ⁵	17.	3 8,9	8 6 5	174	200	3,6	01 100 150	174	288	60 × 103	8 1 5	174 200	8,9	001	174	8 8	109	34	174	3,8,
	f, cps	30 × 106		901 > 010	OT < 0+2			30,000 × 106				30 × 10 ⁶			901 × 040				10,000 × 10 ⁶			
	x/D _n	9.9										7.827							- ·			
	Σ	8																				
	θ, deg	٥																				

TABLE 1.- ESTIMATES OF ATTENUATION, REFLECTION, AND EFFECTIVE PLASMA THICKNESS

AS FUNCTIONS OF BODY GEOMETRY AND REENTRY PARAMETERS - Continued

(R12)	()B	0.9559	9808	. 8. 	.8813	5.8		. 5. 5	116. 116.	.07916 .0001130	.975 .9768	.9782 .9614	.9183	.9523 .9523	.9357	. 9013 9013	.9169 .00297 ¹ 4		¥.6.	. 8.5 8.7 8.7 8.7 8.7 8.7	18.8 18.8	. 50. 50.50.	.9188	.51610 .8992	.01252
7 4	γΒυπ/че, cm	518.9 256.2	277.1	1,500.7	185.5	9 (318.3	3,662	1,55.5	258.5 200.5	1,045.9 266.9	256.6 629.95	7, 1 03.0	112.3 133.3	675 21,800	257.4 1,436	5,250 135.8		2,089.1 610.8 557.2	1,227.5	7.26.5	,4. 40. 70. 70.	000,	42 5.8 5,375	12,310 525.0
	j ja	22.58 9.488	10.116	47.22	8.05	69.4	8.4	11.8	14.52	-4.7. -4.8.	7.30 12.19	1.4° 88°	103.29 12.2	5.12	7.4. 804 7.4.80	¥.45	73.0	1 1	77.116 11.68	19.46	9.69	5.13	271	3.275 25.08	3.755
	Ֆր = 30,48 сш	9.506	15.53 P		4.0.6	2, t. 8, 3,	11.62	3.665 3.576	10.52	. 001309	5.403 14.85	15.27 9.338	1.1215 5.328	12.58 13.24	9.17 1811.	2.436 8.971	2.548 .05009	1 1 1 1 1 1	3.937 11.63 12.46	7-150	3.897 14.11	12.19	99X +0:	2.123 3.282	.02814
db, for -	Dn = 25.40 cm	8.792 15.29	14.80	4.760	8.564	15.45	1.03	2.9899	10.51	.001005	4.806 14.13	14.57 8.625	.8856	12.58	8.38 98.39 40.59		1.851 .4383	\$ \$ 1 1	3.422 10.89	6.778	3.385	11.56	75050.	1.770 2.480	4774. .01984
(SL)R,	Dn = 20.32 cm	7.93	15.89	4.83	7.830	17.4	10.21	2.272	10.45	. 3539 . 0006948	4.116	13.67	.6515 4.069	12.37	7.479	1.9200	1.232		9.9.6 2.88.5	5.982	2.810	10.72	.01972	1.3687	.01286
	$D_{\rm h} = 5.08~{\rm cm}$	3.329 8.734	8.270	1.043	3.321	8.709 247		5245.	4.4.7	.0256	1.1031	8.078 3.203	.06751	7.6 1 6 8.026	2.5% .00,475	. 2801 . 71 ¹ 45	.08369 .002815	!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!	. 6059 4.882	2.058	7947	5,483	.001263	.1512	.0008220
7	4 /m	0.04352	03651	2,880	まさ.	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.5482	.0302	0.00	.02065	.0325	.0387	0350.	25% 26%	.0391 .01874	.01913 .0242	.02½63		.01298 51910.	01585	18210.	(a.	.0157 .00525	.00773 .00743	.0074566
, " 's' (ab)	(SL)A/Un, ab/cm	0.1054	.2058	.05579	000	\$6.	20.7.	.1058	1.559	. 00	.0524	.2287	.0198 148	.653 527.	.276 .0269	.67	.239	1	.0262	. 0520 0420	25.00 20.00	3236	.1433 .0129	.2775	0 0
	Altitude, It	100 × 103 154	174	8, 8,	8	7, 7	± 88	232	34,	7,00 7,00 7,00 7,00 7,00 7,00 7,00 7,00	100 × 10 ⁵	174 200	88	12t	888	84	17t 200		100 × 100 154 × 100			174	8 8	100 154	174 200 230
	f, cps	30 × 10 ⁶			340 × 106			90. 2	77, 000, 101		30 × 106		240 × 106			10,000 × 10 ⁶		`	30 × 10 ⁰		540 × 106		`	10,000 × 10 ⁶	
	×/2,	0.17									09.								8.						
	Σ	15																							
	9, deg	8												,											•

TABLE 1.- ESTIMATES OF ATTENUATION, REFLECTION, AND EFFECTIVE PLASMA THICKNESS

- Continued
PARAMETERS
REENTRY
AND
GEOMETRY
BODY
유
FUNCTIONS
3

(R,2)	\te/B	0.9883 9906 9898 8989	87.	.9577	. 9765 7876.	8.8. 8.8.	.9595 .9681 .9718	.03132		. 988. 1789.	. 9759 . 9759	9779.	58.8. 56.79.	.9668 .9719 .07185	8. 88. 11.	9864	4786.	9766.	1779.	.8770 0524		.9711 .8885
7	ABUTA/Qe, CIII	147.4 89.9 95.8	277.5	52.78 35.92	はごに	800.6 18.13	200.2 662.4 4,365.0	147.9	239.9 156.95 164.4	242.7 184.2	61.23	175.1	35.1	1,033.0 7,628 413.3	312.3	205.98	670.5	8.3 8.8	1.208.0	まれる	1,117.0	7,294.0
	į P	5.889 4.828 5.417	11.93	2.104	2.556 6.0526	35.90	20.11 22.86 147.7	1.289 1.289	5.492 4.776 5.152	6.607	1.856	7.4.8 4.833	7.560	25.80 111.98 5.1957	5.069	4.857	9.106	1.714	2.7.7	1.487	7.5.4.	3.5 8.5 8.5
	Dn = 30.48 cm	19.57 20.44 20.11	17.59	14.89	16.29 16.73	17.18 8.857	13.93	.5023	18.51 20.12 20.12	18.24	5.17 8.17	4.65 5.72 8.72 8.73 8.73 8.73 8.73 8.73 8.73 8.73 8.73	8.790 13.57	14.79 8.005 .2791	17.82	19.71	15.88	16.32	16.23	9.10	14.41	7.56 .05
db, for -	Dn = 25.40 cm	19.20 20.59 20.23	19.51	14.89	16.29	16.65	15.93	1924.	17.81 20.01 19.64	17.55	16.19 8.19	6.8 6.8 6.8 6.8 6.8 6.8 6.8 6.8 6.8 6.8	6.790 13.57	14.77 6.230 .2001	17.07	19.07	13.11	16.40	15.5	9.10	14.28	5.94 50.
(SL)R,	Dn = 20.32 cm	18.51 20.60 20.15	16.05	14.95	16.29	15.84 8.857	15.95	, 3210	16.90 19.27 18.88	15.57	16.23	79.50 16.00 16.00	9.750 13.57	14.68 944.4 3151.	16.13	18.20	12.19	72,27	15.37	9.10	13.85	4.30 50.
	Dn = 5.08 cm	12.83 15.84 15.24	10.50	12.77	13.98 13.08	9.230 8.861	15.59 10.90 1.062	94920	13.53	10.87	13.47	15.01 19.02 19.03 19.03	8.792 11.07	6.391 .3611 .008612	10.36	5. 5. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6.	6.717	12.73 25.73	えた	. e. c	88 	۲ć. 10.
1	ստ/ə _թ	0.03994 0.05370 0.0566	5.5 8.8	.03986	.05642		.05051 .04961 .0388	.02900	.0229 .03043	.02722	2020. 1700.	. 02760 . 02760	25.150. 25.120.	.02303 .01468 .01257	.01623	.02358	01578	.0228	7610	24.00	2010. 4√40.	.0102 .0032
4 (12)	(SL)A/Vn, ab/cm	0.371 469.	. 323 525	1.059	1.382	.570	4.83 2.89 835	.00112	. 228	555. 571.	1.067	2019 5057.		1.565 .443 .000931	.175	275	211. 201.	932	186. 186.	3.15	1.118	.395
	Altitude, it	100 × 103 154 174	3 8	100 451	177	230	154 174 200	232	100 × 10 ³ 15 ⁴ 17 ⁴	88	84	7.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00	304 304 304 304 304 304 304 304 304 304	174 200 230		17.00	250	<u>4</u>	200	38;	‡ 1 1 1	. 500 540 540
	r, cps	30 × 106		540 × 100		10,000 × 10 ⁶			30 × 10 ⁶	1	-01 × 040		10,000 × 10 ⁶		30 × 106		240 × 106			10,000 × 10 ⁶		
Ē	т <mark>и/х</mark>	0.50							1.8						5.00			_				
<u> </u>	Σ.	50														-						
	e, deg	R											. –					_			_	

TABLE I.- ESTIMATES OF ATTENUATION, REFLECTION, AND EFFECTIVE PLASMA TRICKNESS

AS FUNCTIONS OF BODY GEOMETRY AND REENTRY PARAMETERS - Concluded

(8,5)	1.75/B	0.9919 .9937 8938	3.86. 9.166.	8.8.8 7.7.7.88	.9877 .9763 .9817 .9817	6196. 88.98. 88.98. 88.98.	8. 8. 8. 8. 8. 8. 8. 8. 8. 8. 8. 8. 8. 8	8.86.87.888 5.87.47.888 5.87.47.88				
.)	^B√n/ae, c≡	64.2 49.10	22.8	18.4; 20.48 40.65 221.2	5.85 54.1 147.2 895 10,580	101.6 76.0 765 110.9	175.8 36.10 28.42 30.53	251.2 8.18 60.6 168.1 1,113 13,280	106.2 79.3 81.8 116.8	207.5 37.81 29.76 32.70 61.16	298.4 8.6 63.9 184.3	1,425
1	₽	4.075 3.196 12.23	6.251	1.2168 1.24.51 12.4.75 12.4.75	5.72 9.95 12 747	4.099 3.131 3.092 3.859	5.677 1.455 1.1699 1.2305 2.013	8.36 2.5 6.63 33.97	7.125 7.125 7.108 7.856	5.749 1.168 1.2885 2.020	8.553 .3238 6.65	¥.33
	ր _ո = 30.48 cm	8 50 3 8 8 60 3 8	20.87 16.46	17.82 18.10 18.16 19.31	9.889 14.86 16.25 17.38 11.92	22.14 22.14 22.25 21.74	20.54 10.43 11.83 11.43 10.04	5.5% 4.4% 5.5% 8.4% 9.8% 9.8% 9.8% 9.8% 9.8% 9.8% 9.8% 9.8	21.21 22.17 22.27 21.77	20.10 16.44 17.83 18.12 18.04	18.75 9.594 14.40 15.87	17.07 4.181
db, for -	Ֆդ = 25.40 cm	8.88.88 8.88.88 8.09.88	20.8 16.16	17.82 18.10 18.16	9.889 14.86 16.25 17.38 9.46	25.28 25.28 25.28 27.28	20.09 16.43 17.83 18.14	16.77 17.05 17.05 6.933	21.26 22.32 22.42 21.42	19.51 16.44 17.83 18.12 18.04	18.57 9.59 14.40 15.87	17.07
(SL) _R , d	$D_{\rm h}$ = 20.32 cm	21.14 22.05 22.08	20.58 16.46	17.82 18.10 19.25	9.889 14.86 16.25 17.38 6.851	22.45 22.45 22.55 21.45	19.74 17.82 18.15 19.15 19.15	18.51 14.39 15.87 17.05	21.01 22.47 22.54 21.33	18.67 16.42 17.83 18.12 18.05	18.16 9.59 14.40 15.87	17.02 2.059
	Դր = 5.08 cm	17.90 20.19 20.19	15.45 16.77	18.02 18.24 17.51 15.46	9.889 14.86 16.24 14.16 5.824	15.93 18.57 18.45 16.14	13.60 17.73 17.88 16.02	55.52 26.24 26.51 5.51 5.88 8.88	15.74 18.18 18.14 15.92	12.87 15.55 17.64 17.67 15.82	12.80 9.594 14.39 15.71	8.277
r,	%/√n	0.0635 .0664 .0658	8.55	.06610 .06549 .05978 .05624	.0633 .0688 .0676 .0570	5649. 6449. 848.	.0323 .04031 .04116 .0403	.055789 .0597 .04125 .0596 .0505 .01882		.0277 .03846 .03925 .03787	.02866 .03765 .03894 .0361	.0241 .01196
4 (10)	αρ/αρ «Ψη/Υ/πε)	0.853 1.154 1.152		3.527 2.724 1.13	17.58 12.22 8.62 7.56	8.65±8.	. 403 1.531 2.222 1.655		.515. 769. 789. 503.	2.952 2.952 2.979 1.568	. 818 10.43 8.0 5.4	1.789 .2955
10	Altitude, it	100 × 10 ³ 15 ⁴ 17 ⁴	8,8,8	4,1 2,00 3,00 3,00 3,00 3,00 3,00 3,00 3,00	100 174 200 200 200 200 200 200 200 200 200 20	100 154 171 200	230 175 204 175 204 204 204 204 204 204 204 204 204 204	230 174 200 230 230 230 230 230 230 230 230 230		23 154 174 20 274 20 20 20 20 20 20 20 20 20 20 20 20 20	28 17 17 17 17	230
	т, срв	30 × 106	240 × 106		10,000 × 10 ⁶	30 × 106	240 × 106	10,000 × 10 ⁶	30 × 10 ⁶	240 × 106	10,000 × 106	
7	чл/х	0.50				1.00			8.0			
\vdash	ξ.	83							-			
	a, deg	ጽ			.,,							

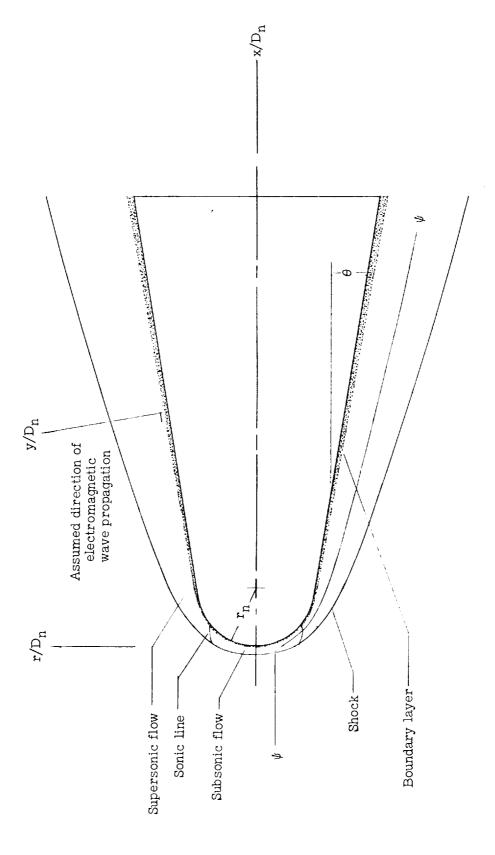


Figure 1.- Typical patterns about a hypersonic blunt body.

15.00 100,000 18.10 175,000 18.24 150,000 P 19.25 200,000 15.00 85,000
20.00 60,000 15.00 100,000 20.00 100,000

Figure 2.- Flow-field solutions obtained by real-gas characteristics method. (Ridyard and FitzGibbon computations; published by permission of the General Electric Co.)

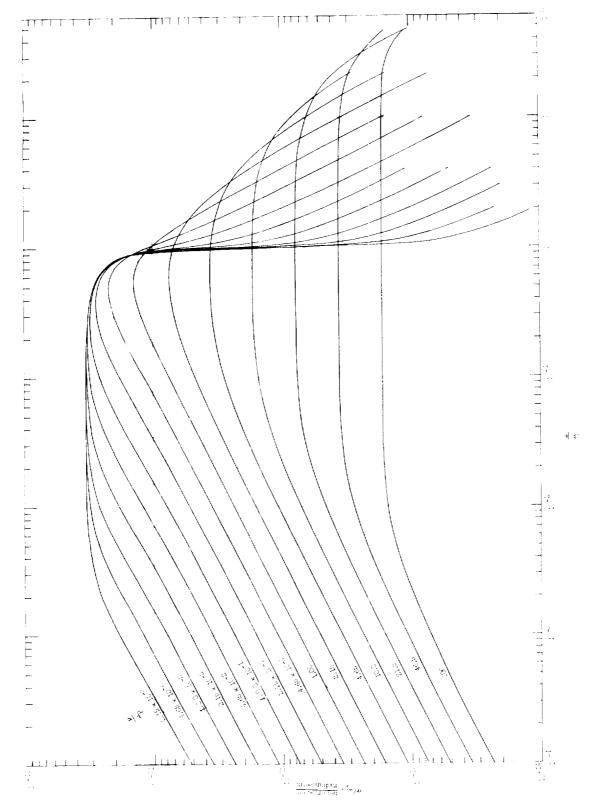


Figure 5.- Variation of plane-wave attenuation coefficient a, normalized with respect to plasma frequency $\omega_{\mathbf{p}}$, in ionized media.

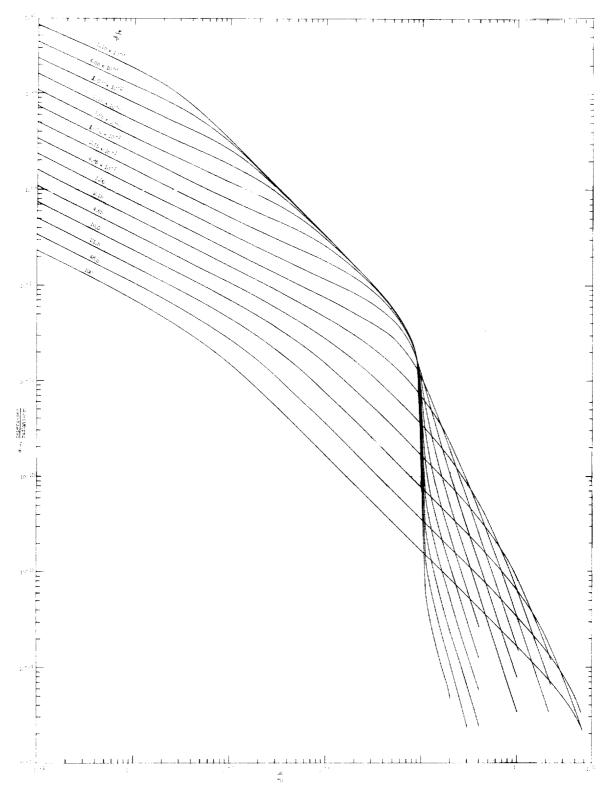


Figure 4.- Variation of plane-wave attenuation coefficient α , normalized with respect to signal frequency ω , in ionized media.

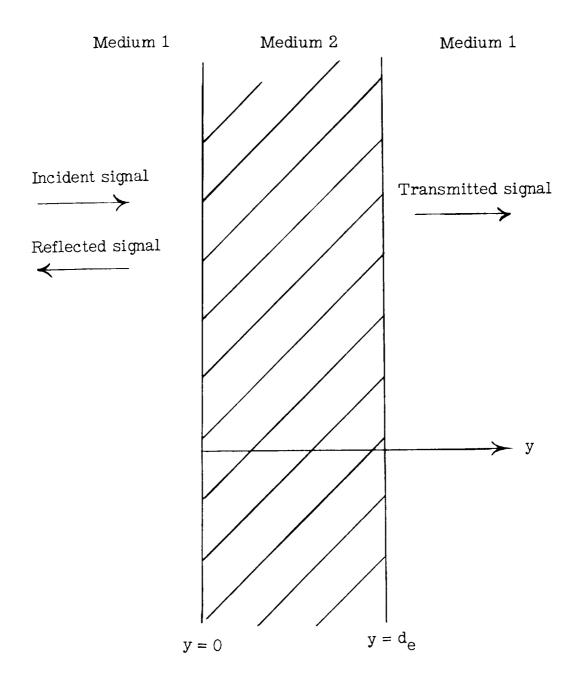


Figure 5.- Reflection and transmission of plane waves by a plane, homogeneous, electrically conducting sheet at normal incidence.

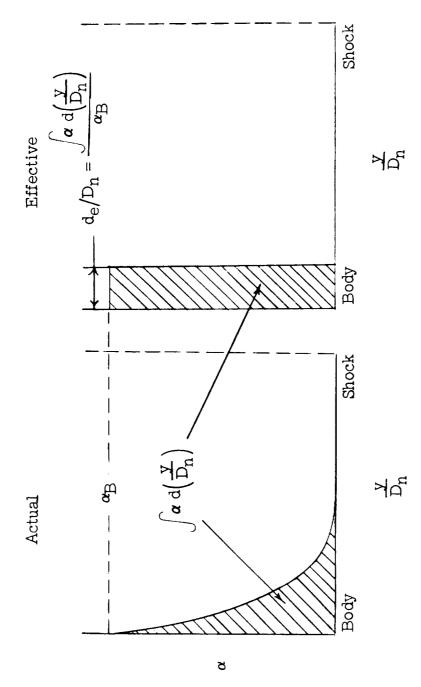


Figure 6.- Effective plasma thickness de for calculation of reflection losses.

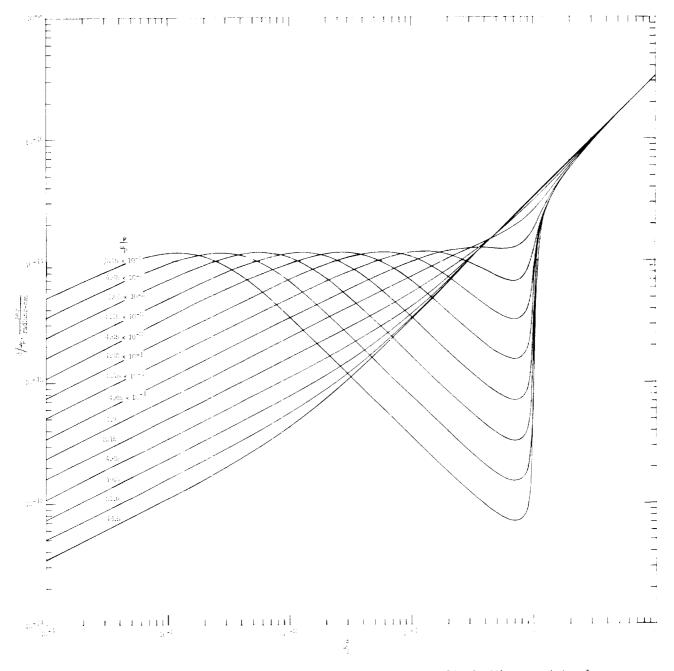


Figure 7.- Variation of plane-wave phase constant $~\beta,$ normalized with respect to plasma frequency $~\phi_p,$ in ionized media.

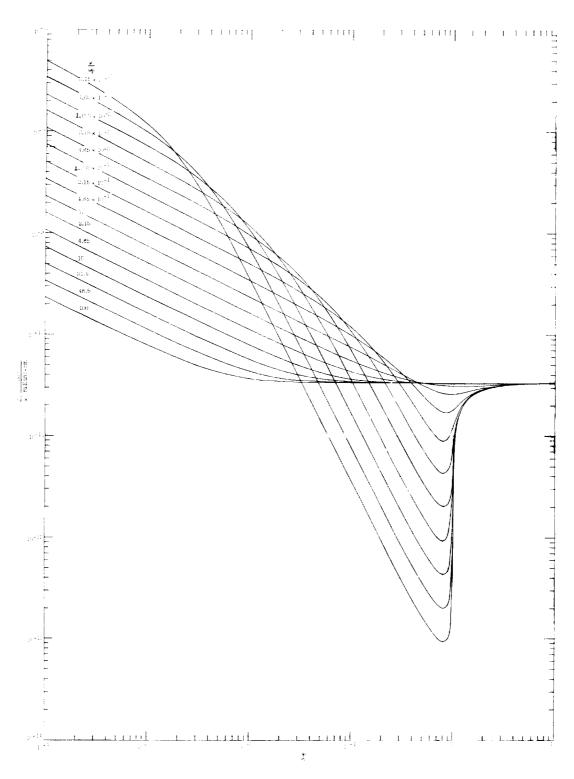


Figure 8.- Variation of plane-wave phase constant $\;\beta,\;normalized$ with respect to signal frequency $\;\omega,\;in\;ionized\;media.$

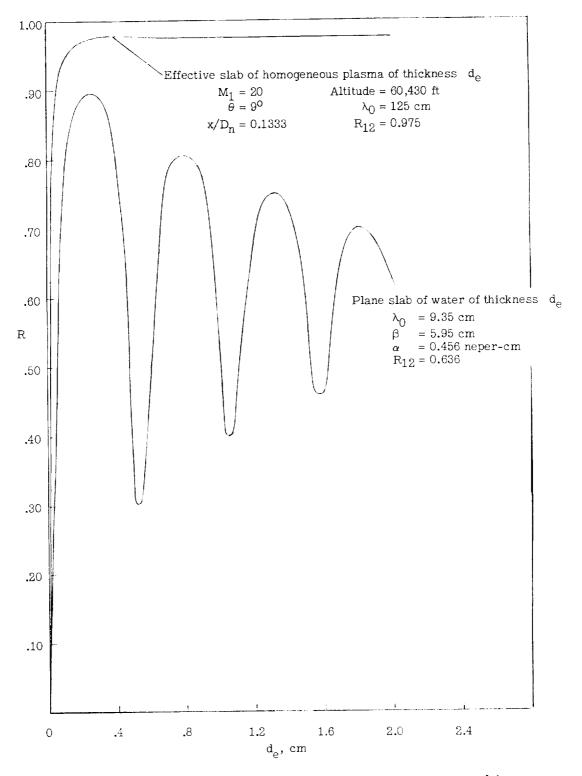


Figure 9.- Examples of reflection coefficient for a plane homogeneous slab.

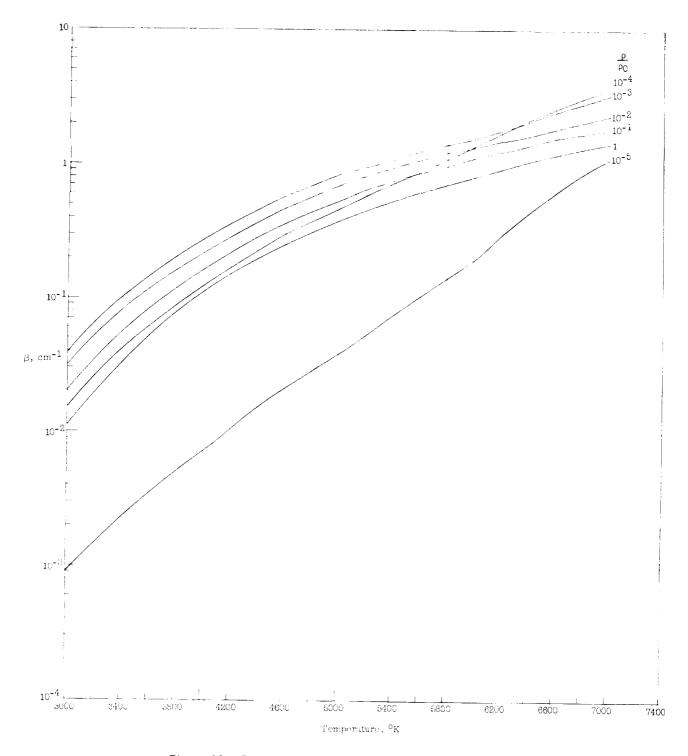


Figure 10.- Phase constant β for equilibrium air at f = 30 mc.

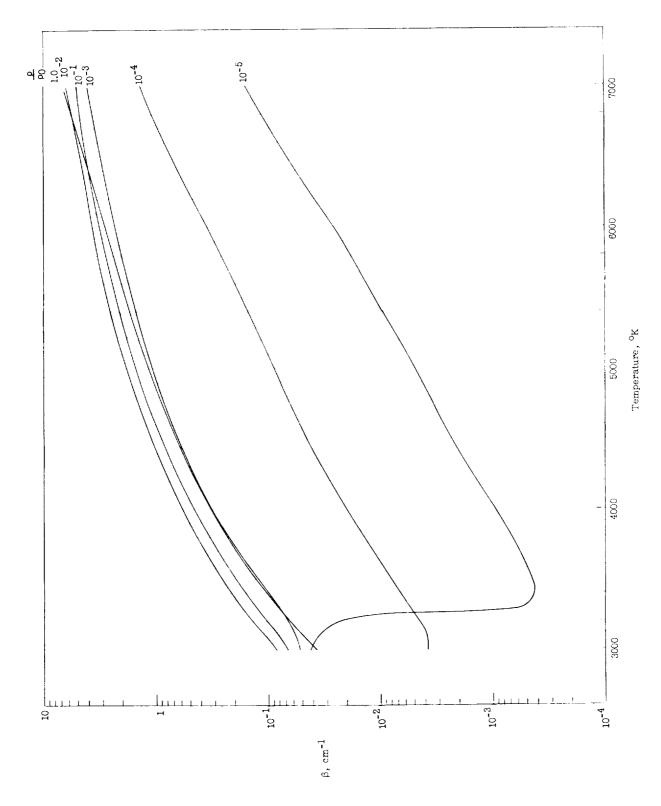


Figure 11.- Phase constant β for equilibrium air at f=240 mc.

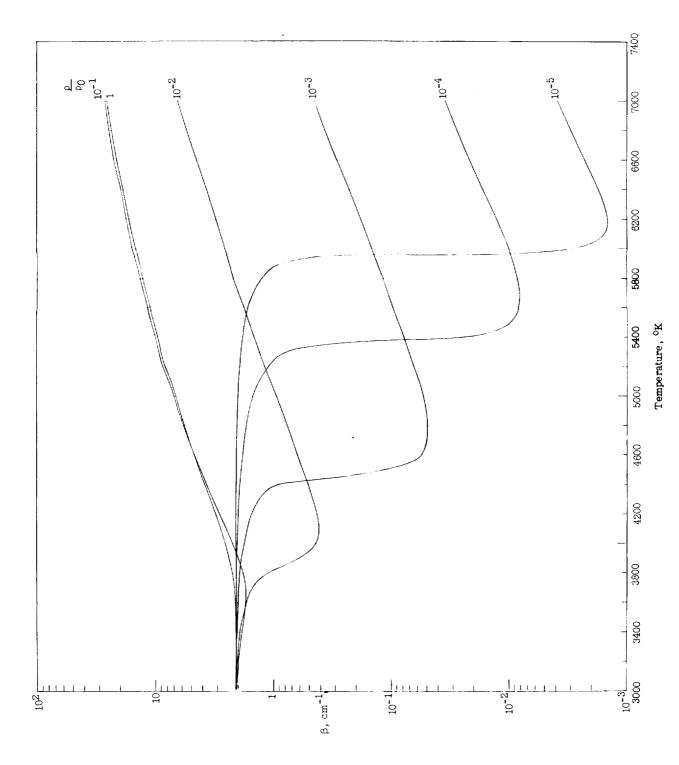


Figure 12.- Phase constant β for equilibrium air at f = 10,000 mc.

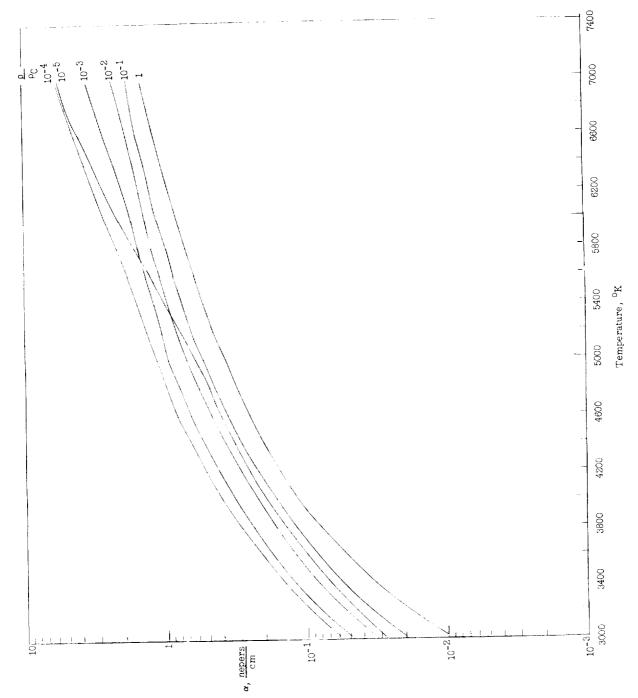


Figure 13.- Attenuation coefficient α for equilibrium air at f = 30 mc.

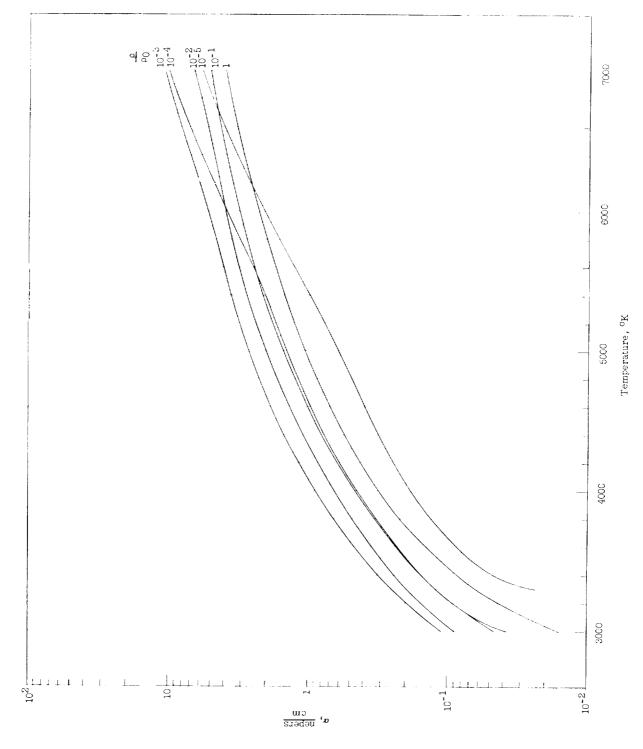


Figure 14.- Attenuation coefficient α for equilibrium air at f=240 mc.

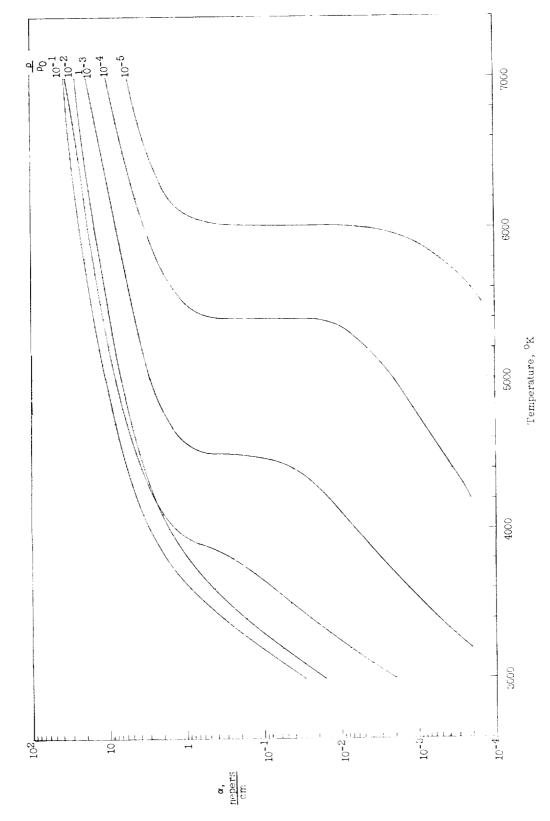


Figure 15.- Attenuation coefficient α for equilibrium air at f = 10,000 mc.

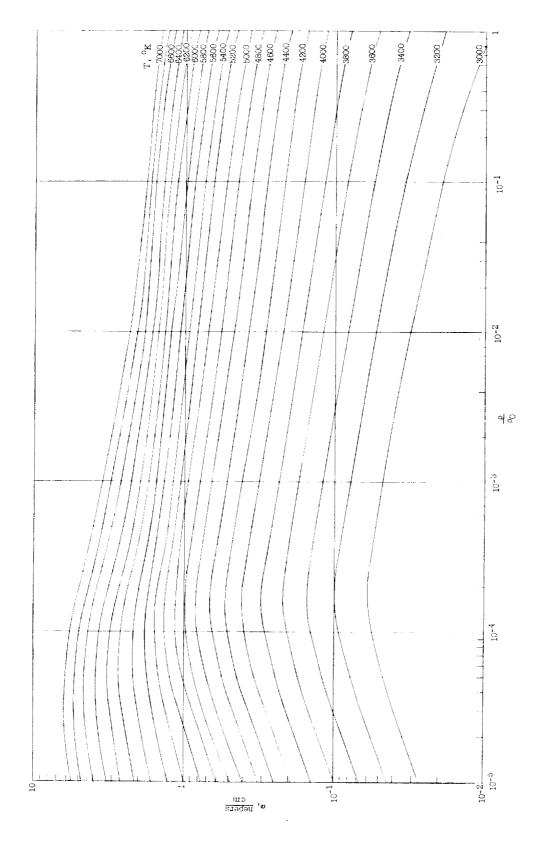


Figure 16.- Attenuation coefficient α for equilibrium air at f = 30 mc.

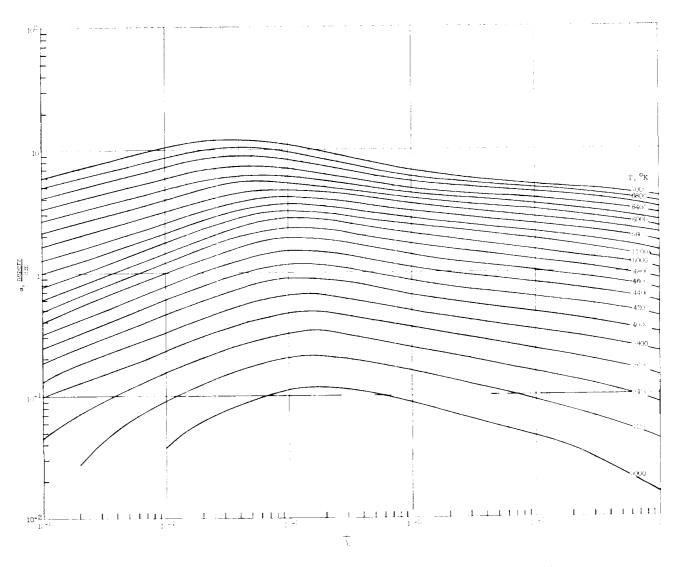


Figure 17.- Attenuation coefficient $\,\alpha\,$ for equilibrium air at $\,f$ = $2^{\frac{h}{4}}0$ mc.

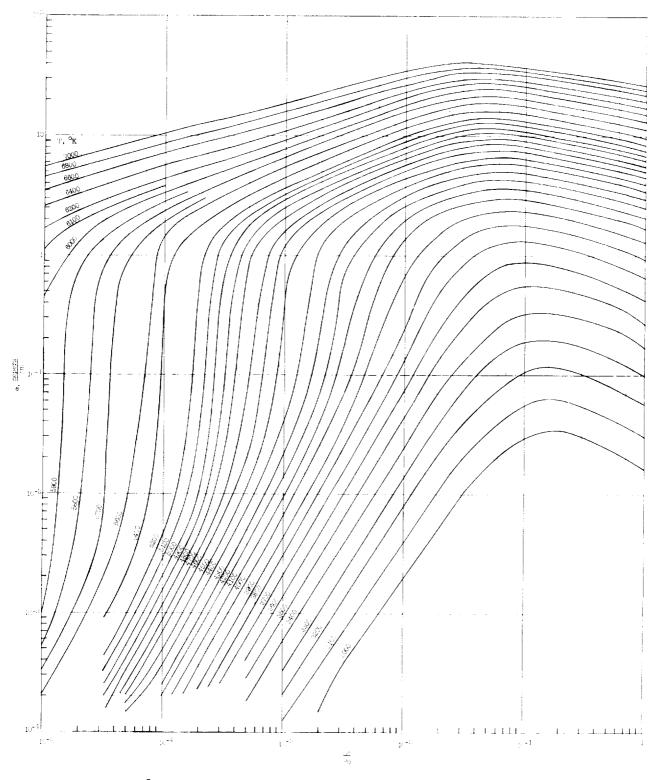


Figure 18.- Attenuation coefficient α for equilibrium air at f = 10,000 mc.

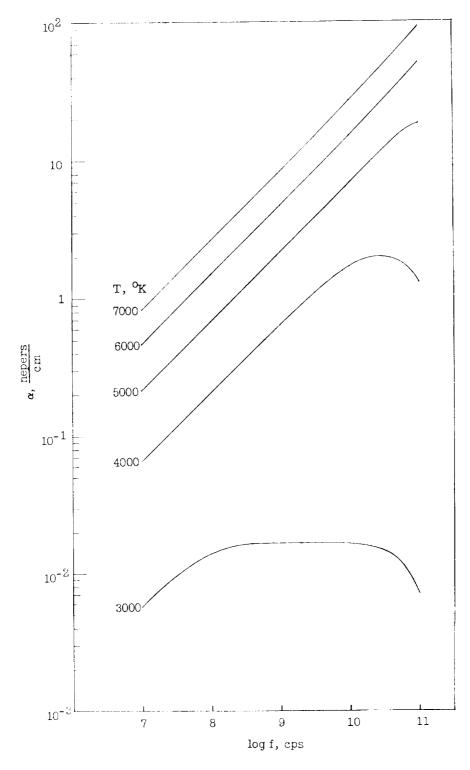


Figure 19.- Variation of attenuation coefficient $\,\alpha\,$ with signal frequency for equilibrium air at $\,\rho/\rho_0$ = 1.

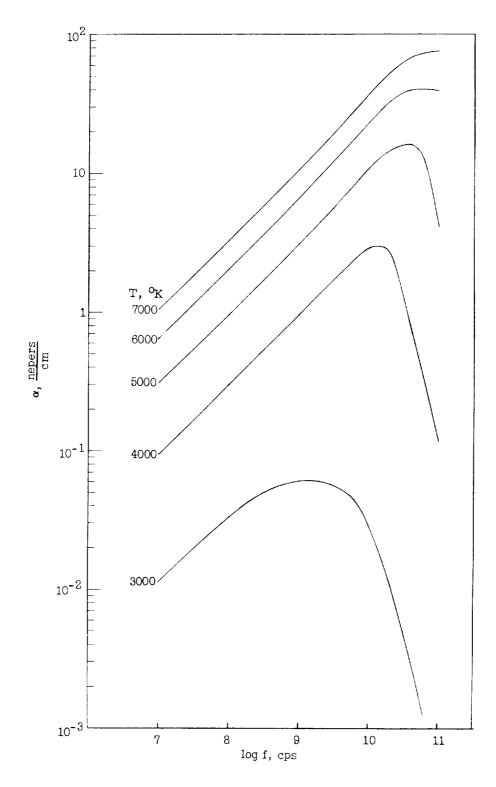


Figure 20.- Variation of attenuation coefficient $\,\alpha\,$ with signal frequency for equilibrium air at $\,\rho/\rho_0$ = $10^{-1}.$

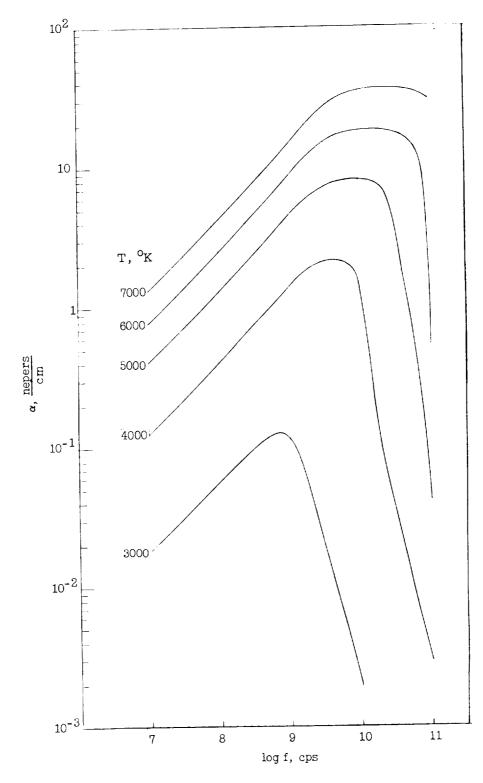


Figure 21.- Variation of attenuation coefficient $\,\alpha\,$ with signal frequency for equilibrium air at $\,\rho/\rho_0$ = $10^{-2}.$

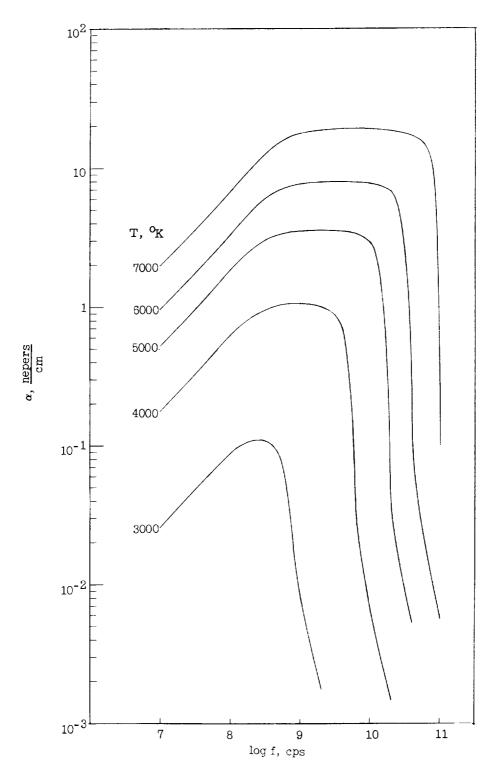


Figure 22.- Variation of attenuation coefficient $\,\alpha\,$ with signal frequency for equilibrium air at $\,\rho/\rho_0$ = $10^{-3}.$

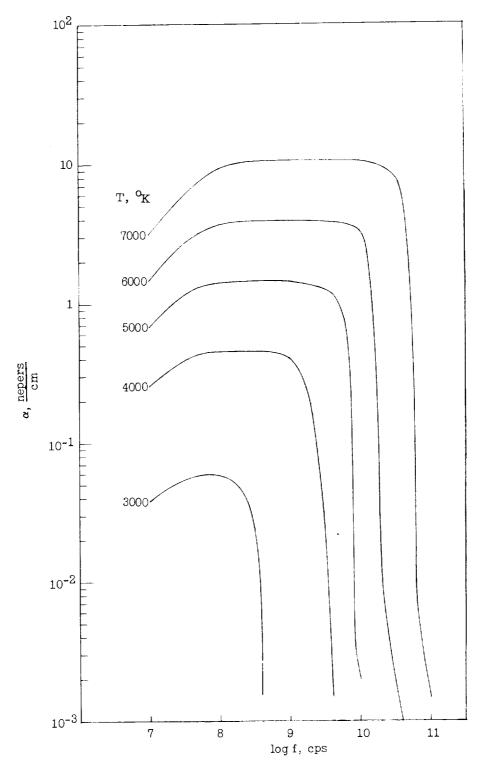


Figure 23.- Variation of attenuation coefficient $\,\alpha\,$ with signal frequency for equilibrium air at $\,\rho/\rho_0$ = 10^{-4} .

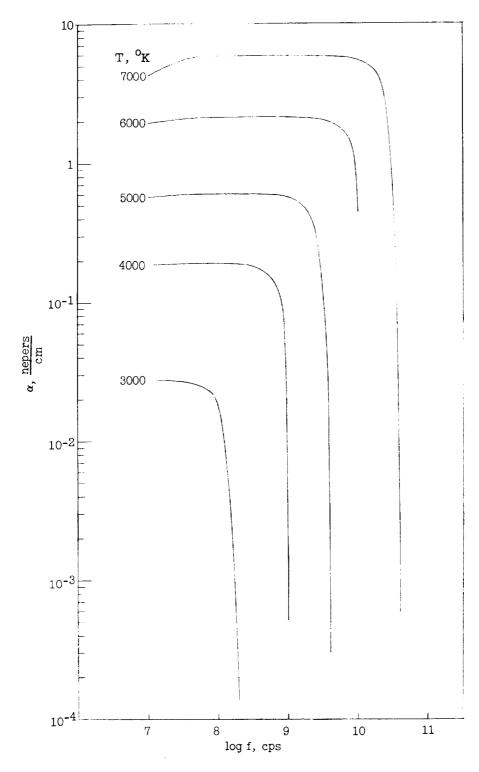


Figure 24.- Variation of attenuation coefficient $\,\alpha\,$ with signal frequency for equilibrium air at $\,\rho/\rho_0$ = 10-5.

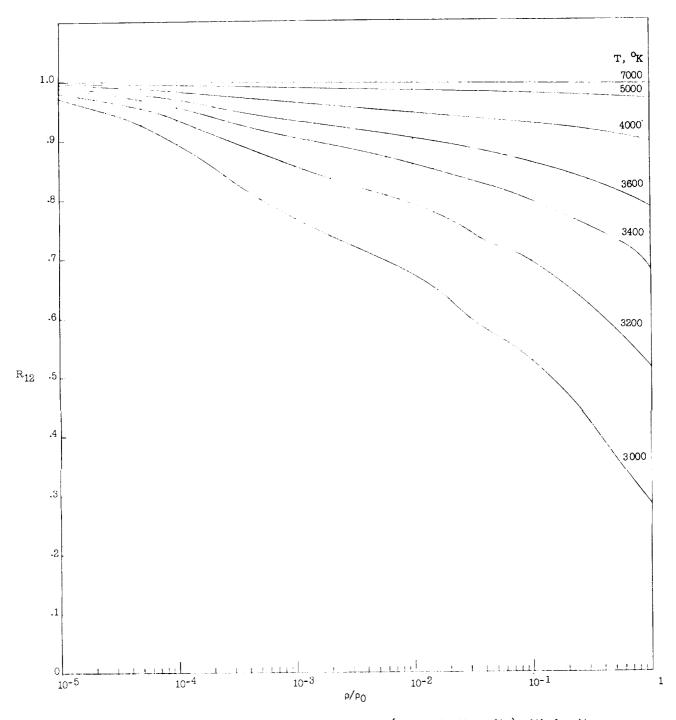


Figure 25.- Variation of reflection coefficient (semi-infinite media) with density for equilibrium air at f = 30 mc.

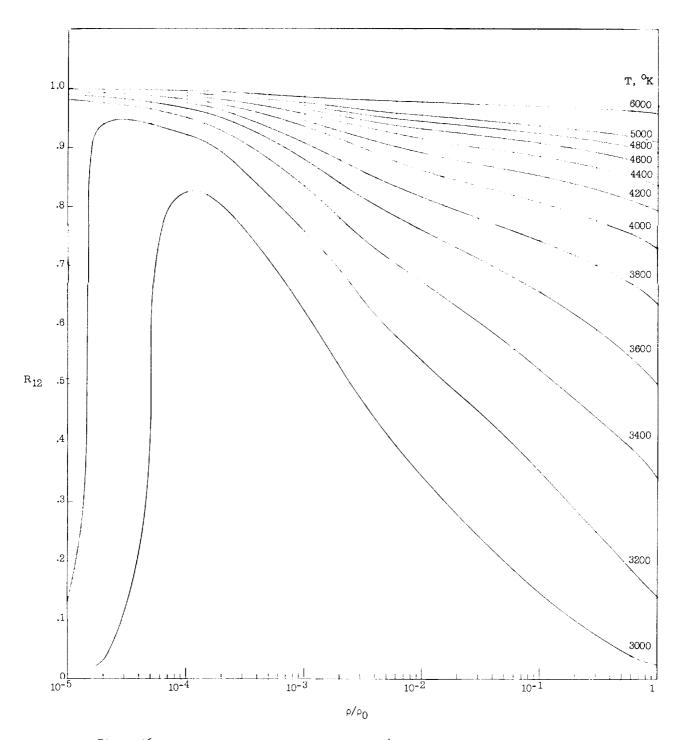


Figure 26.- Variation of reflection coefficient (semi-infinite media) with density for equilibrium air at f = 240 mc.

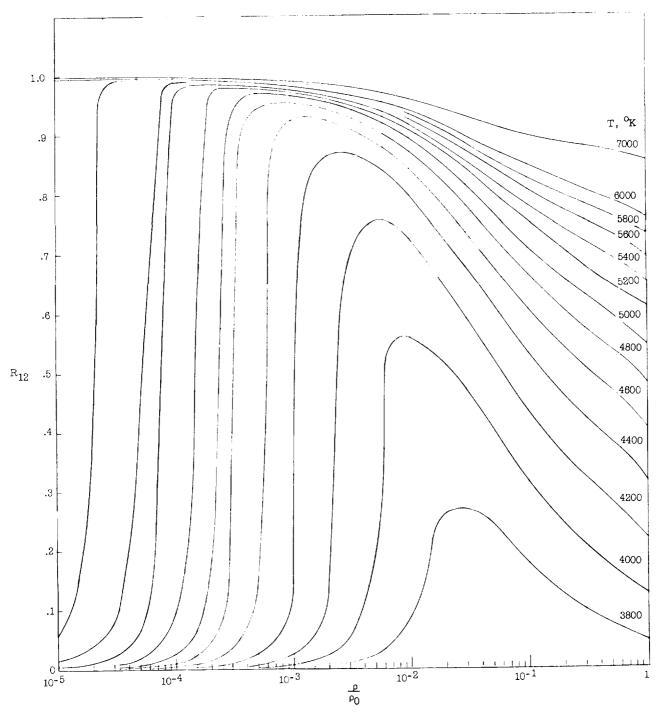


Figure 27.- Variation of reflection coefficient (semi-infinite media) with density for equilibrium air at f = 10,000 mc.

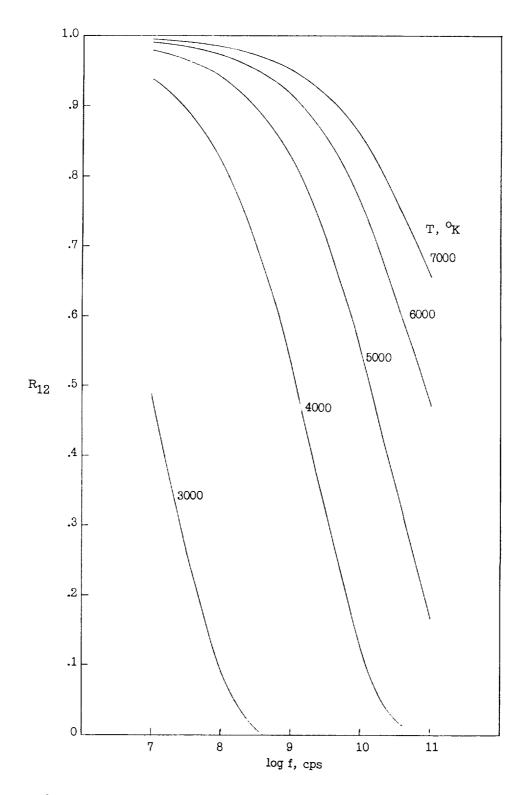


Figure 28.- Variation of reflection coefficient (semi-infinite media) with signal frequency for equilibrium air at ρ/ρ_0 = 1.

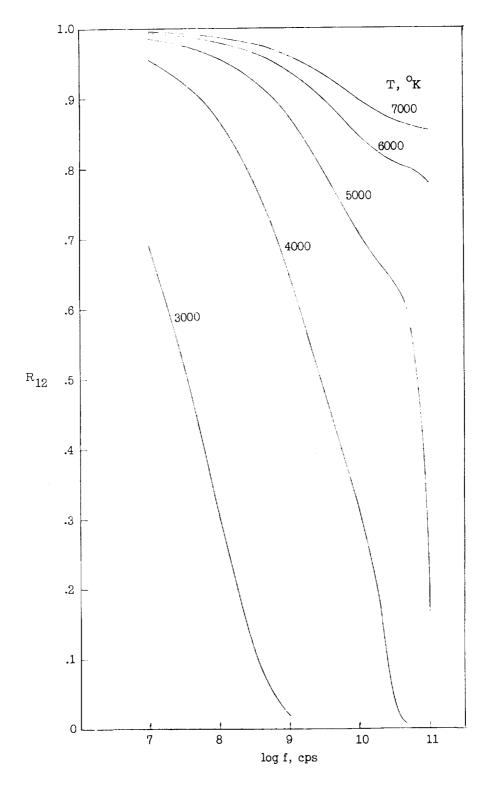


Figure 29.- Variation of reflection coefficient (semi-infinite media) with signal frequency for equilibrium air at $\rho/\rho_0 = 10^{-1}$.

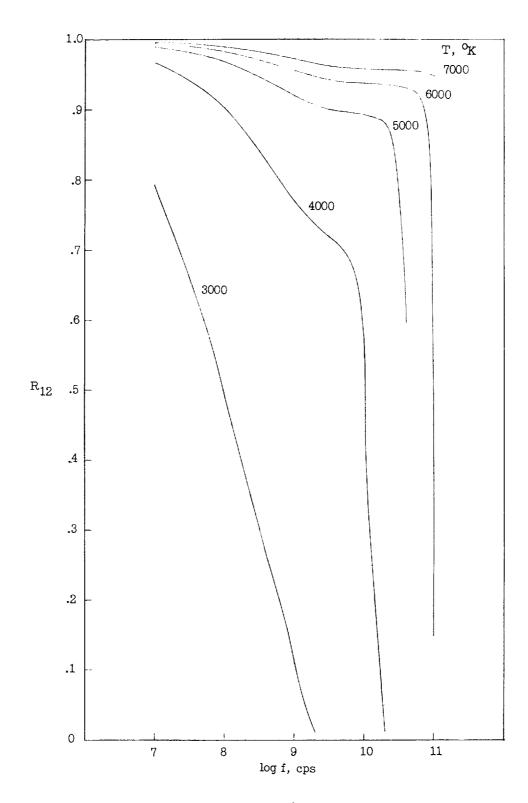


Figure 30.- Variation of reflection coefficient (semi-infinite media) with signal frequency for equilibrium air at ρ/ρ_0 = 10⁻².

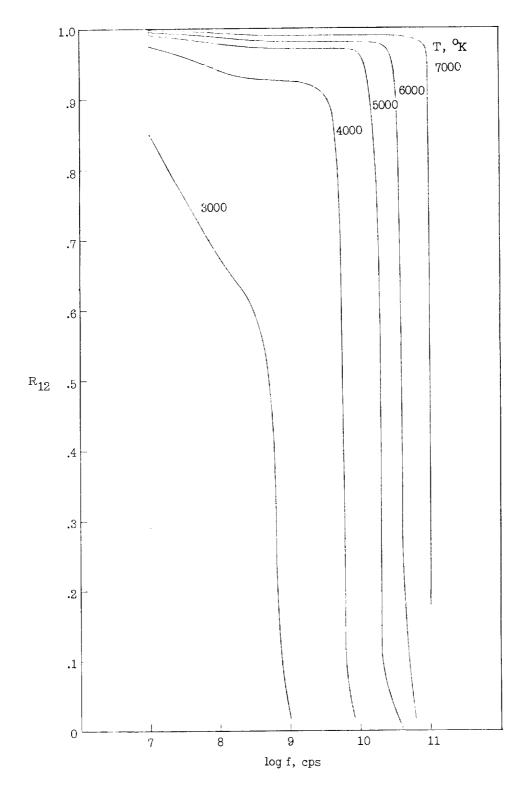


Figure 31.- Variation of reflection coefficient (semi-infinite media) with signal frequency for equilibrium air at $\rho/\rho_0=10^{-3}$.

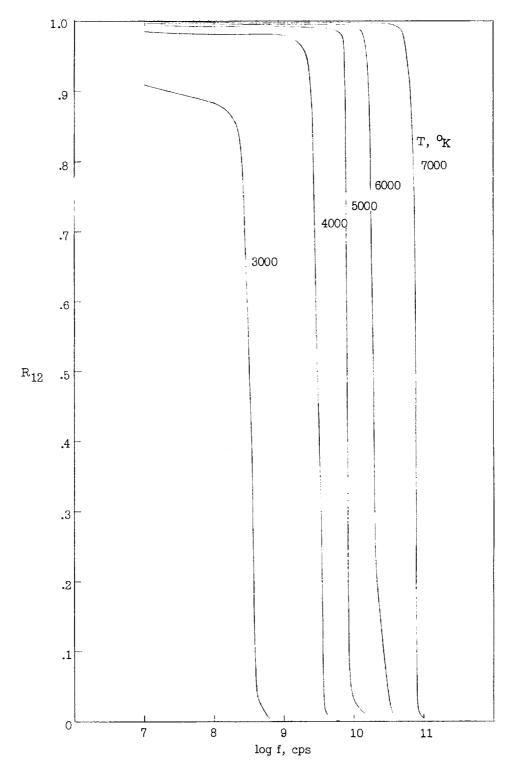


Figure 32.- Variation of reflection coefficient (semi-infinite media) with signal frequency for equilibrium air at ρ/ρ_0 = 10^{-4} .

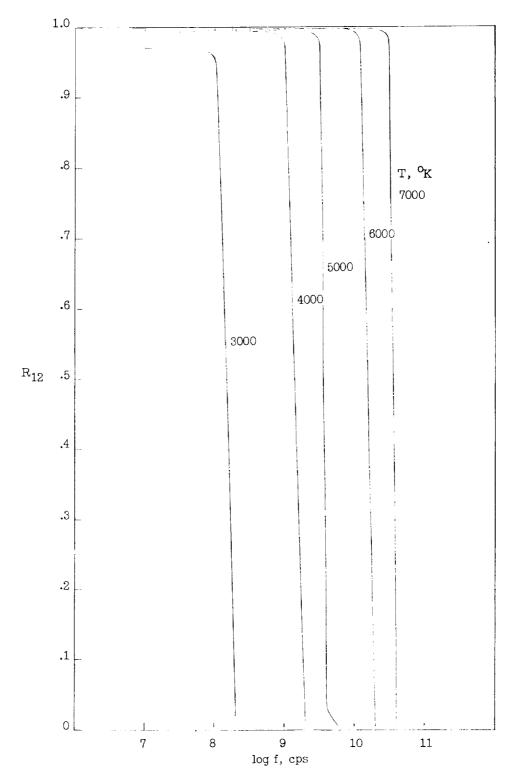


Figure 33.- Variation of reflection coefficient (semi-infinite media) with signal frequency for equilibrium air at ρ/ρ_0 = 10⁻⁵.

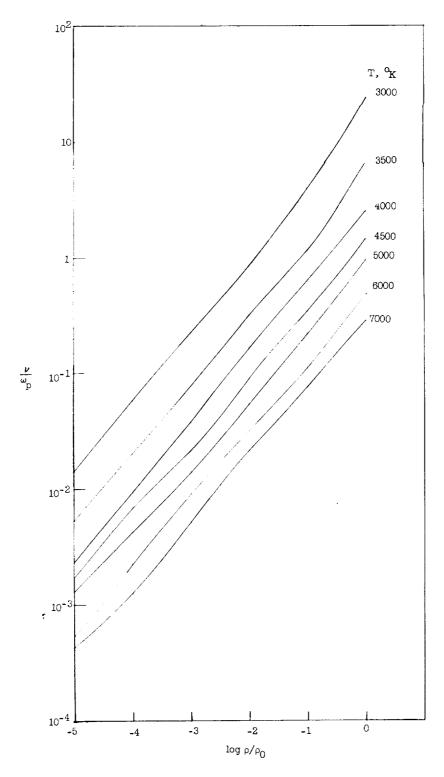


Figure 34.- Normalized electron collision frequency for equilibrium air.

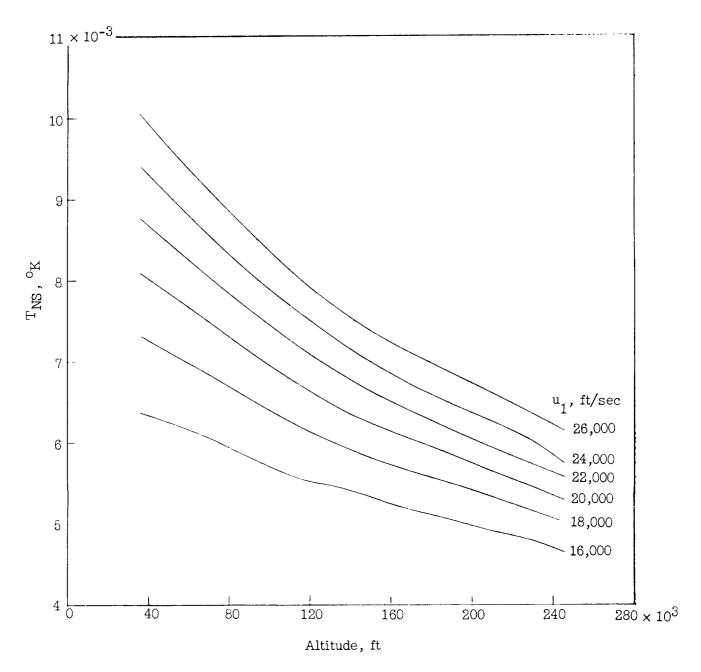


Figure 35.- Normal-shock temperature for equilibrium air.

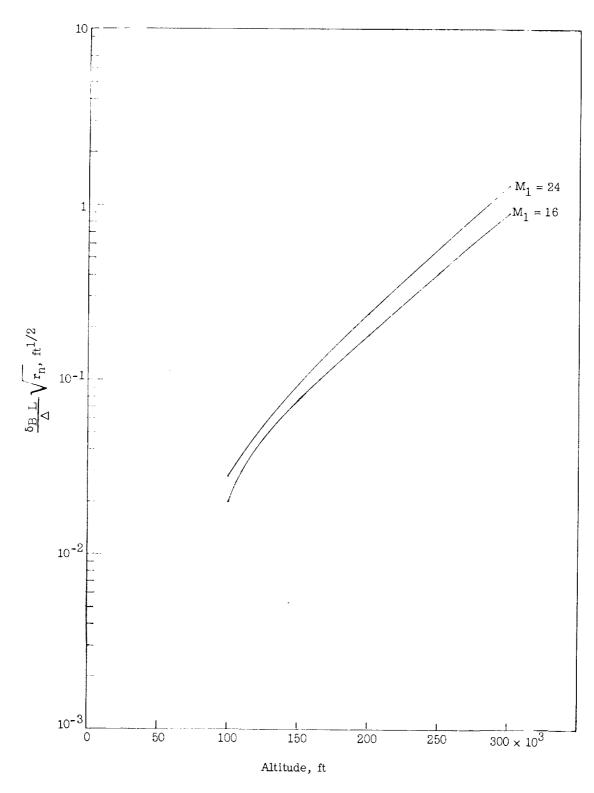


Figure 36.- Stagnation-point viscous flow parameter.

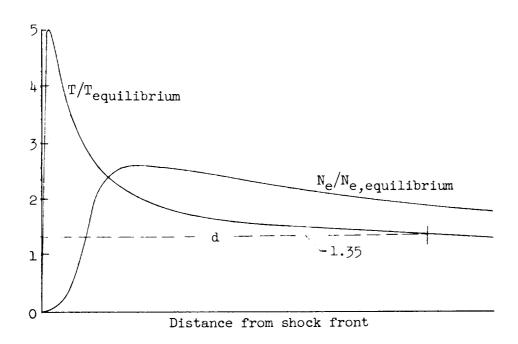


Figure 37.- Typical effects of nonequilibrium flow in the region of the normal shock. (From ref. 16.)

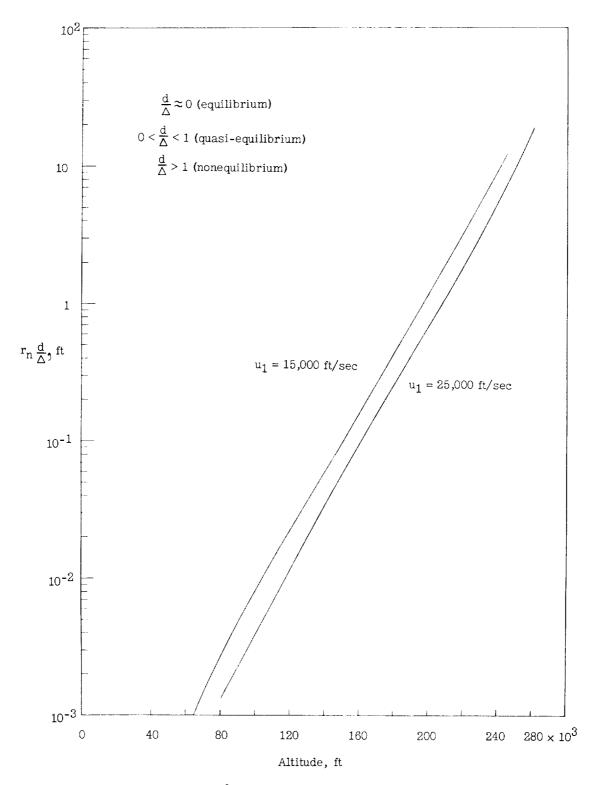


Figure 38.- Nonequilibrium flow parameter.

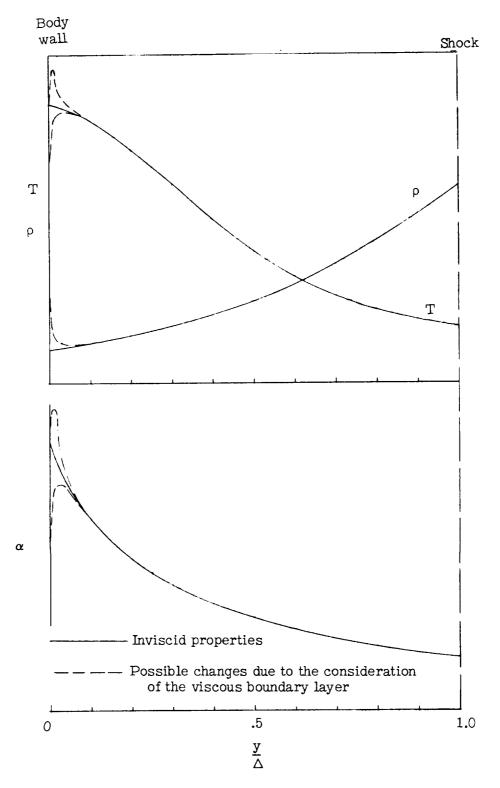


Figure 39.- Typical trends of properties within the shock layer.

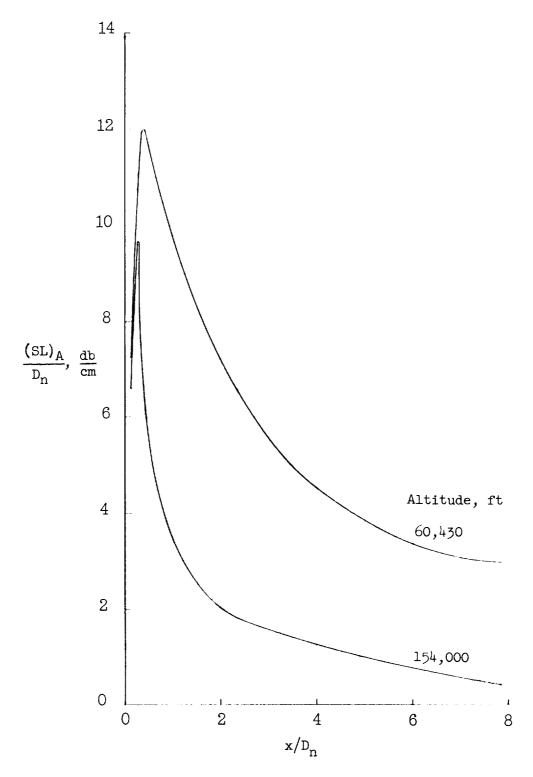


Figure 40.- Typical stationwise attenuation of waves emanating normally from the body. θ = 9°; M = 20; f = 10,000 mc.

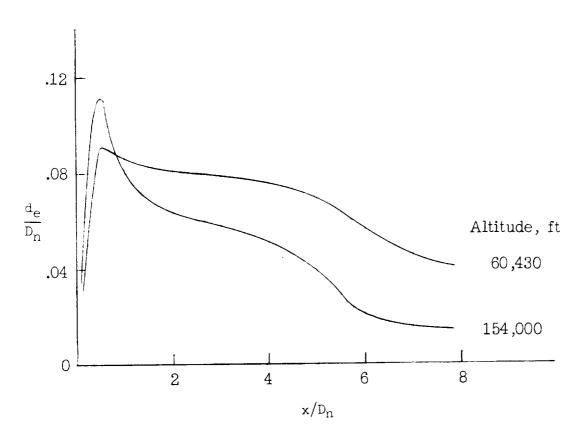


Figure 41.- Typical stationwise variation of the effective plasma thickness. $\theta = 9^{\circ}$; M = 20; f = 10,000 mc.

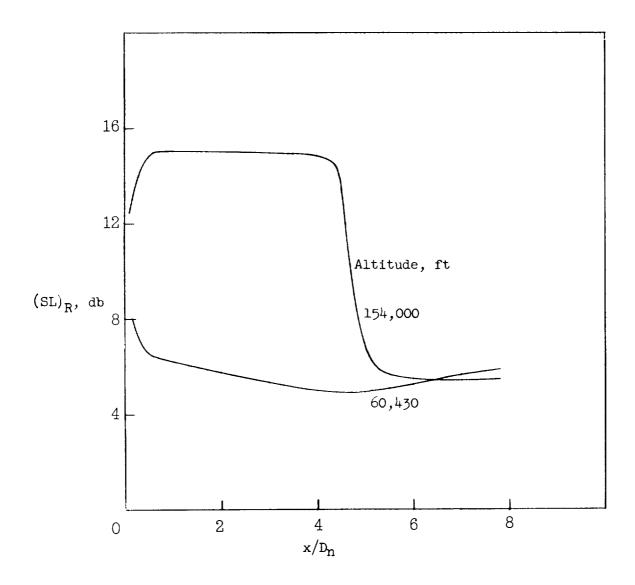


Figure 42.- Example of stationwise variation of the signal loss due to reflection. θ = 9° ; M = 20; f = 10,000 mc; D_n = 30.48 cm.

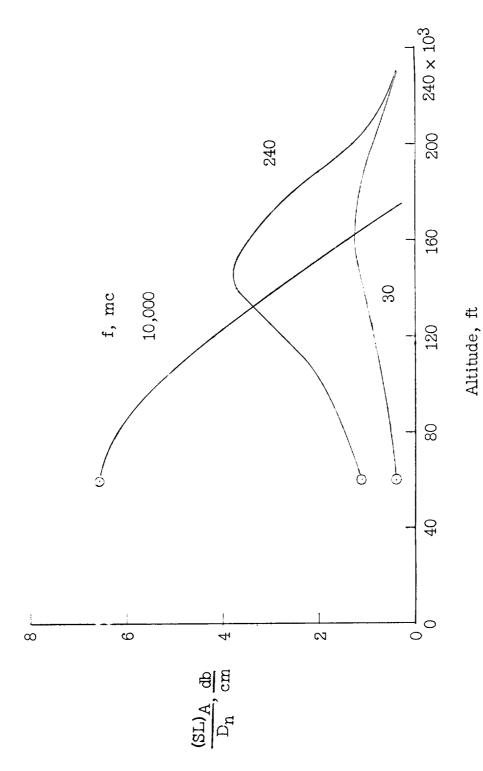


Figure 43.- Example of variation of attenuation with altitude for a constant Mach number trajectory. $\theta = 9^{\circ}$; M = 20; $x/D_{\rm n} = 2.355$.

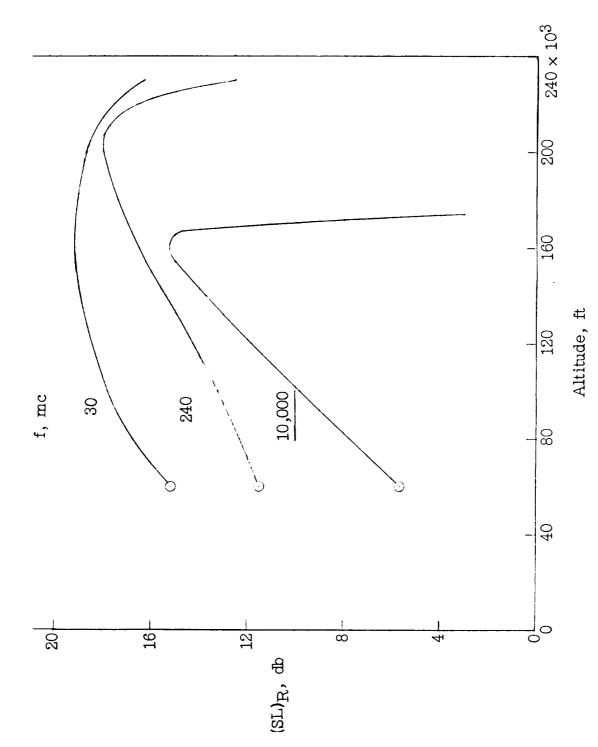


Figure 44.- Example of variation with altitude of signal loss due to reflection (plane sheet theory) for a constant Mach number trajectory. $\theta = 9^{\circ}$; M = 20; $X/D_{\rm h} = 2.333$; $D_{\rm h} = 20.32$ cm.

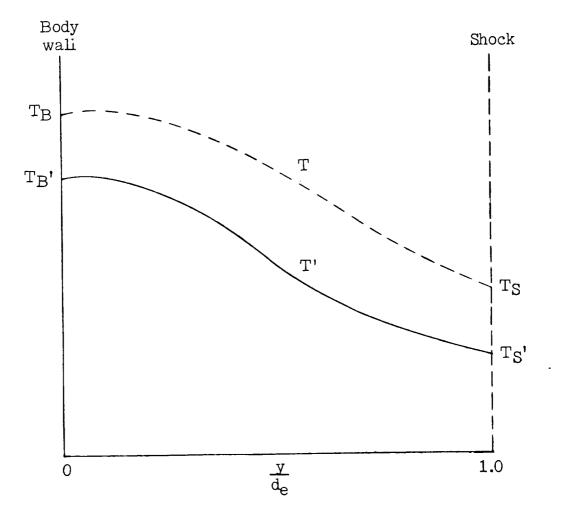


Figure 45.- Modification of temperature distribution for change of altitude at constant Mach number. (T' is given temperature distribution and T is temperature distribution modified for different altitudes.)

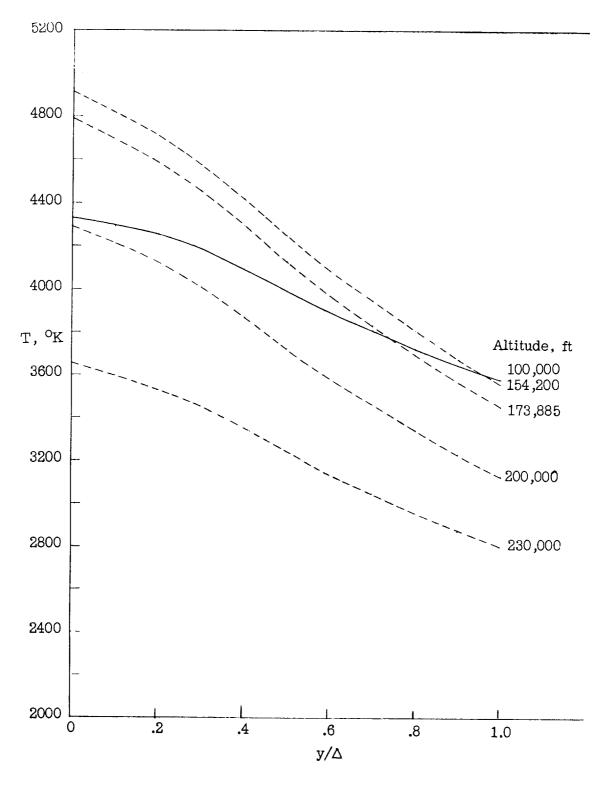


Figure 46.- Modified temperature distributions for the complete altitude range. (θ = 30°; M = 15; x/D_n = 0.17; Δ/D_n = 0.07; base altitude, 100,000 ft.)

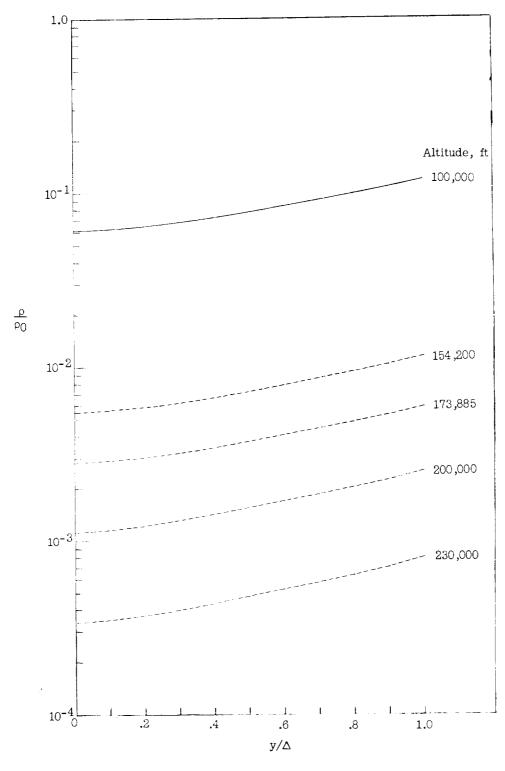


Figure 47.- Example of altitude modification of given flow-field solution. Solid line is original solution. θ = 30°; M = 15; x/D_n = 0.17; Δ /D_n = 0.07.